Evaluate
-2h
Expand
-2h
Share
Copied to clipboard
-3h-z-\left(h-\left(z+2h\right)\right)
To find the opposite of 3h+z, find the opposite of each term.
-3h-z-\left(h-z-2h\right)
To find the opposite of z+2h, find the opposite of each term.
-3h-z-\left(-h-z\right)
Combine h and -2h to get -h.
-3h-z-\left(-h\right)-\left(-z\right)
To find the opposite of -h-z, find the opposite of each term.
-3h-z+h-\left(-z\right)
The opposite of -h is h.
-3h-z+h+z
The opposite of -z is z.
-2h-z+z
Combine -3h and h to get -2h.
-2h
Combine -z and z to get 0.
-3h-z-\left(h-\left(z+2h\right)\right)
To find the opposite of 3h+z, find the opposite of each term.
-3h-z-\left(h-z-2h\right)
To find the opposite of z+2h, find the opposite of each term.
-3h-z-\left(-h-z\right)
Combine h and -2h to get -h.
-3h-z-\left(-h\right)-\left(-z\right)
To find the opposite of -h-z, find the opposite of each term.
-3h-z+h-\left(-z\right)
The opposite of -h is h.
-3h-z+h+z
The opposite of -z is z.
-2h-z+z
Combine -3h and h to get -2h.
-2h
Combine -z and z to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}