Solve for h
h=2\sqrt{17}-9\approx -0.753788749
h=-2\sqrt{17}-9\approx -17.246211251
Share
Copied to clipboard
-\left(9+6h+h^{2}\right)-4\times 1\left(3h+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+h\right)^{2}.
-9-6h-h^{2}-4\times 1\left(3h+1\right)=0
To find the opposite of 9+6h+h^{2}, find the opposite of each term.
-9-6h-h^{2}-4\left(3h+1\right)=0
Multiply 4 and 1 to get 4.
-9-6h-h^{2}-12h-4=0
Use the distributive property to multiply -4 by 3h+1.
-9-18h-h^{2}-4=0
Combine -6h and -12h to get -18h.
-13-18h-h^{2}=0
Subtract 4 from -9 to get -13.
-h^{2}-18h-13=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
h=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -18 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-\left(-18\right)±\sqrt{324-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
Square -18.
h=\frac{-\left(-18\right)±\sqrt{324+4\left(-13\right)}}{2\left(-1\right)}
Multiply -4 times -1.
h=\frac{-\left(-18\right)±\sqrt{324-52}}{2\left(-1\right)}
Multiply 4 times -13.
h=\frac{-\left(-18\right)±\sqrt{272}}{2\left(-1\right)}
Add 324 to -52.
h=\frac{-\left(-18\right)±4\sqrt{17}}{2\left(-1\right)}
Take the square root of 272.
h=\frac{18±4\sqrt{17}}{2\left(-1\right)}
The opposite of -18 is 18.
h=\frac{18±4\sqrt{17}}{-2}
Multiply 2 times -1.
h=\frac{4\sqrt{17}+18}{-2}
Now solve the equation h=\frac{18±4\sqrt{17}}{-2} when ± is plus. Add 18 to 4\sqrt{17}.
h=-2\sqrt{17}-9
Divide 18+4\sqrt{17} by -2.
h=\frac{18-4\sqrt{17}}{-2}
Now solve the equation h=\frac{18±4\sqrt{17}}{-2} when ± is minus. Subtract 4\sqrt{17} from 18.
h=2\sqrt{17}-9
Divide 18-4\sqrt{17} by -2.
h=-2\sqrt{17}-9 h=2\sqrt{17}-9
The equation is now solved.
-\left(9+6h+h^{2}\right)-4\times 1\left(3h+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+h\right)^{2}.
-9-6h-h^{2}-4\times 1\left(3h+1\right)=0
To find the opposite of 9+6h+h^{2}, find the opposite of each term.
-9-6h-h^{2}-4\left(3h+1\right)=0
Multiply 4 and 1 to get 4.
-9-6h-h^{2}-12h-4=0
Use the distributive property to multiply -4 by 3h+1.
-9-18h-h^{2}-4=0
Combine -6h and -12h to get -18h.
-13-18h-h^{2}=0
Subtract 4 from -9 to get -13.
-18h-h^{2}=13
Add 13 to both sides. Anything plus zero gives itself.
-h^{2}-18h=13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-h^{2}-18h}{-1}=\frac{13}{-1}
Divide both sides by -1.
h^{2}+\left(-\frac{18}{-1}\right)h=\frac{13}{-1}
Dividing by -1 undoes the multiplication by -1.
h^{2}+18h=\frac{13}{-1}
Divide -18 by -1.
h^{2}+18h=-13
Divide 13 by -1.
h^{2}+18h+9^{2}=-13+9^{2}
Divide 18, the coefficient of the x term, by 2 to get 9. Then add the square of 9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}+18h+81=-13+81
Square 9.
h^{2}+18h+81=68
Add -13 to 81.
\left(h+9\right)^{2}=68
Factor h^{2}+18h+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+9\right)^{2}}=\sqrt{68}
Take the square root of both sides of the equation.
h+9=2\sqrt{17} h+9=-2\sqrt{17}
Simplify.
h=2\sqrt{17}-9 h=-2\sqrt{17}-9
Subtract 9 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}