Solve for x
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
Graph
Share
Copied to clipboard
-\left(4x^{2}+8x+4\right)=\left(x-4\right)\left(x+2\right)\left(-4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
-4x^{2}-8x-4=\left(x-4\right)\left(x+2\right)\left(-4\right)
To find the opposite of 4x^{2}+8x+4, find the opposite of each term.
-4x^{2}-8x-4=\left(x^{2}-2x-8\right)\left(-4\right)
Use the distributive property to multiply x-4 by x+2 and combine like terms.
-4x^{2}-8x-4=-4x^{2}+8x+32
Use the distributive property to multiply x^{2}-2x-8 by -4.
-4x^{2}-8x-4+4x^{2}=8x+32
Add 4x^{2} to both sides.
-8x-4=8x+32
Combine -4x^{2} and 4x^{2} to get 0.
-8x-4-8x=32
Subtract 8x from both sides.
-16x-4=32
Combine -8x and -8x to get -16x.
-16x=32+4
Add 4 to both sides.
-16x=36
Add 32 and 4 to get 36.
x=\frac{36}{-16}
Divide both sides by -16.
x=-\frac{9}{4}
Reduce the fraction \frac{36}{-16} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}