Solve for t
t=-0.5
Share
Copied to clipboard
-2t-\left(-0.71\right)=0.9\left(1.4-t\right)
To find the opposite of 2t-0.71, find the opposite of each term.
-2t+0.71=0.9\left(1.4-t\right)
The opposite of -0.71 is 0.71.
-2t+0.71=1.26-0.9t
Use the distributive property to multiply 0.9 by 1.4-t.
-2t+0.71+0.9t=1.26
Add 0.9t to both sides.
-1.1t+0.71=1.26
Combine -2t and 0.9t to get -1.1t.
-1.1t=1.26-0.71
Subtract 0.71 from both sides.
-1.1t=0.55
Subtract 0.71 from 1.26 to get 0.55.
t=\frac{0.55}{-1.1}
Divide both sides by -1.1.
t=\frac{55}{-110}
Expand \frac{0.55}{-1.1} by multiplying both numerator and the denominator by 100.
t=-\frac{1}{2}
Reduce the fraction \frac{55}{-110} to lowest terms by extracting and canceling out 55.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}