Solve for x
x=\frac{e-16}{6}\approx -2.213619695
Graph
Share
Copied to clipboard
-2e-\left(-12\right)=-4\left(3x+5\right)
To find the opposite of 2e-12, find the opposite of each term.
-2e+12=-4\left(3x+5\right)
The opposite of -12 is 12.
-2e+12=-12x-20
Use the distributive property to multiply -4 by 3x+5.
-12x-20=-2e+12
Swap sides so that all variable terms are on the left hand side.
-12x=-2e+12+20
Add 20 to both sides.
-12x=-2e+32
Add 12 and 20 to get 32.
-12x=32-2e
The equation is in standard form.
\frac{-12x}{-12}=\frac{32-2e}{-12}
Divide both sides by -12.
x=\frac{32-2e}{-12}
Dividing by -12 undoes the multiplication by -12.
x=\frac{e}{6}-\frac{8}{3}
Divide -2e+32 by -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}