Evaluate
\frac{43}{20}=2.15
Factor
\frac{43}{2 ^ {2} \cdot 5} = 2\frac{3}{20} = 2.15
Share
Copied to clipboard
-\left(\frac{48+11}{24}+\frac{1\times 15+7}{15}\right)+\frac{3\times 24+13}{24}+\frac{2\times 15+8}{15}
Multiply 2 and 24 to get 48.
-\left(\frac{59}{24}+\frac{1\times 15+7}{15}\right)+\frac{3\times 24+13}{24}+\frac{2\times 15+8}{15}
Add 48 and 11 to get 59.
-\left(\frac{59}{24}+\frac{15+7}{15}\right)+\frac{3\times 24+13}{24}+\frac{2\times 15+8}{15}
Multiply 1 and 15 to get 15.
-\left(\frac{59}{24}+\frac{22}{15}\right)+\frac{3\times 24+13}{24}+\frac{2\times 15+8}{15}
Add 15 and 7 to get 22.
-\left(\frac{295}{120}+\frac{176}{120}\right)+\frac{3\times 24+13}{24}+\frac{2\times 15+8}{15}
Least common multiple of 24 and 15 is 120. Convert \frac{59}{24} and \frac{22}{15} to fractions with denominator 120.
-\frac{295+176}{120}+\frac{3\times 24+13}{24}+\frac{2\times 15+8}{15}
Since \frac{295}{120} and \frac{176}{120} have the same denominator, add them by adding their numerators.
-\frac{471}{120}+\frac{3\times 24+13}{24}+\frac{2\times 15+8}{15}
Add 295 and 176 to get 471.
-\frac{157}{40}+\frac{3\times 24+13}{24}+\frac{2\times 15+8}{15}
Reduce the fraction \frac{471}{120} to lowest terms by extracting and canceling out 3.
-\frac{157}{40}+\frac{72+13}{24}+\frac{2\times 15+8}{15}
Multiply 3 and 24 to get 72.
-\frac{157}{40}+\frac{85}{24}+\frac{2\times 15+8}{15}
Add 72 and 13 to get 85.
-\frac{471}{120}+\frac{425}{120}+\frac{2\times 15+8}{15}
Least common multiple of 40 and 24 is 120. Convert -\frac{157}{40} and \frac{85}{24} to fractions with denominator 120.
\frac{-471+425}{120}+\frac{2\times 15+8}{15}
Since -\frac{471}{120} and \frac{425}{120} have the same denominator, add them by adding their numerators.
\frac{-46}{120}+\frac{2\times 15+8}{15}
Add -471 and 425 to get -46.
-\frac{23}{60}+\frac{2\times 15+8}{15}
Reduce the fraction \frac{-46}{120} to lowest terms by extracting and canceling out 2.
-\frac{23}{60}+\frac{30+8}{15}
Multiply 2 and 15 to get 30.
-\frac{23}{60}+\frac{38}{15}
Add 30 and 8 to get 38.
-\frac{23}{60}+\frac{152}{60}
Least common multiple of 60 and 15 is 60. Convert -\frac{23}{60} and \frac{38}{15} to fractions with denominator 60.
\frac{-23+152}{60}
Since -\frac{23}{60} and \frac{152}{60} have the same denominator, add them by adding their numerators.
\frac{129}{60}
Add -23 and 152 to get 129.
\frac{43}{20}
Reduce the fraction \frac{129}{60} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}