Solve for n
n=\sqrt{10}\approx 3.16227766
n=-\sqrt{10}\approx -3.16227766
Share
Copied to clipboard
-\left(4+4n+n^{2}\right)+4\left(2+n\right)=-6
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+n\right)^{2}.
-4-4n-n^{2}+4\left(2+n\right)=-6
To find the opposite of 4+4n+n^{2}, find the opposite of each term.
-4-4n-n^{2}+8+4n=-6
Use the distributive property to multiply 4 by 2+n.
4-4n-n^{2}+4n=-6
Add -4 and 8 to get 4.
4-n^{2}=-6
Combine -4n and 4n to get 0.
-n^{2}=-6-4
Subtract 4 from both sides.
-n^{2}=-10
Subtract 4 from -6 to get -10.
n^{2}=\frac{-10}{-1}
Divide both sides by -1.
n^{2}=10
Fraction \frac{-10}{-1} can be simplified to 10 by removing the negative sign from both the numerator and the denominator.
n=\sqrt{10} n=-\sqrt{10}
Take the square root of both sides of the equation.
-\left(4+4n+n^{2}\right)+4\left(2+n\right)=-6
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+n\right)^{2}.
-4-4n-n^{2}+4\left(2+n\right)=-6
To find the opposite of 4+4n+n^{2}, find the opposite of each term.
-4-4n-n^{2}+8+4n=-6
Use the distributive property to multiply 4 by 2+n.
4-4n-n^{2}+4n=-6
Add -4 and 8 to get 4.
4-n^{2}=-6
Combine -4n and 4n to get 0.
4-n^{2}+6=0
Add 6 to both sides.
10-n^{2}=0
Add 4 and 6 to get 10.
-n^{2}+10=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
n=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-1\right)\times 10}}{2\left(-1\right)}
Square 0.
n=\frac{0±\sqrt{4\times 10}}{2\left(-1\right)}
Multiply -4 times -1.
n=\frac{0±\sqrt{40}}{2\left(-1\right)}
Multiply 4 times 10.
n=\frac{0±2\sqrt{10}}{2\left(-1\right)}
Take the square root of 40.
n=\frac{0±2\sqrt{10}}{-2}
Multiply 2 times -1.
n=-\sqrt{10}
Now solve the equation n=\frac{0±2\sqrt{10}}{-2} when ± is plus.
n=\sqrt{10}
Now solve the equation n=\frac{0±2\sqrt{10}}{-2} when ± is minus.
n=-\sqrt{10} n=\sqrt{10}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}