Evaluate
\frac{81}{31381059613}\approx 2.581174791 \cdot 10^{-9}
Factor
\frac{3 ^ {4}}{31381059613} = 2.5811747913841865 \times 10^{-9}
Share
Copied to clipboard
\frac{-81}{-3^{22}-4}
Calculate -9 to the power of 2 and get 81.
\frac{-81}{-31381059609-4}
Calculate 3 to the power of 22 and get 31381059609.
\frac{-81}{-31381059613}
Subtract 4 from -31381059609 to get -31381059613.
\frac{81}{31381059613}
Fraction \frac{-81}{-31381059613} can be simplified to \frac{81}{31381059613} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}