Evaluate
\frac{260}{21}\approx 12.380952381
Factor
\frac{2 ^ {2} \cdot 5 \cdot 13}{3 \cdot 7} = 12\frac{8}{21} = 12.380952380952381
Share
Copied to clipboard
-\left(-\frac{48+7}{6}\right)-\left(-7\sqrt{4}\right)-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Multiply 8 and 6 to get 48.
-\left(-\frac{55}{6}\right)-\left(-7\sqrt{4}\right)-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Add 48 and 7 to get 55.
\frac{55}{6}-\left(-7\sqrt{4}\right)-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
The opposite of -\frac{55}{6} is \frac{55}{6}.
\frac{55}{6}-\left(-7\times 2\right)-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Calculate the square root of 4 and get 2.
\frac{55}{6}-\left(-14\right)-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Multiply -7 and 2 to get -14.
\frac{55}{6}+14-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
The opposite of -14 is 14.
\frac{55}{6}+\frac{84}{6}-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Convert 14 to fraction \frac{84}{6}.
\frac{55+84}{6}-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Since \frac{55}{6} and \frac{84}{6} have the same denominator, add them by adding their numerators.
\frac{139}{6}-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Add 55 and 84 to get 139.
\frac{139}{6}-\frac{42+4}{7}+1-\frac{5\times 14+3}{14}
Multiply 6 and 7 to get 42.
\frac{139}{6}-\frac{46}{7}+1-\frac{5\times 14+3}{14}
Add 42 and 4 to get 46.
\frac{973}{42}-\frac{276}{42}+1-\frac{5\times 14+3}{14}
Least common multiple of 6 and 7 is 42. Convert \frac{139}{6} and \frac{46}{7} to fractions with denominator 42.
\frac{973-276}{42}+1-\frac{5\times 14+3}{14}
Since \frac{973}{42} and \frac{276}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{697}{42}+1-\frac{5\times 14+3}{14}
Subtract 276 from 973 to get 697.
\frac{697}{42}+\frac{42}{42}-\frac{5\times 14+3}{14}
Convert 1 to fraction \frac{42}{42}.
\frac{697+42}{42}-\frac{5\times 14+3}{14}
Since \frac{697}{42} and \frac{42}{42} have the same denominator, add them by adding their numerators.
\frac{739}{42}-\frac{5\times 14+3}{14}
Add 697 and 42 to get 739.
\frac{739}{42}-\frac{70+3}{14}
Multiply 5 and 14 to get 70.
\frac{739}{42}-\frac{73}{14}
Add 70 and 3 to get 73.
\frac{739}{42}-\frac{219}{42}
Least common multiple of 42 and 14 is 42. Convert \frac{739}{42} and \frac{73}{14} to fractions with denominator 42.
\frac{739-219}{42}
Since \frac{739}{42} and \frac{219}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{520}{42}
Subtract 219 from 739 to get 520.
\frac{260}{21}
Reduce the fraction \frac{520}{42} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}