Evaluate
\frac{38}{7}\approx 5.428571429
Factor
\frac{2 \cdot 19}{7} = 5\frac{3}{7} = 5.428571428571429
Share
Copied to clipboard
-\left(-\frac{56+6}{7}\right)-\left(-\frac{7\times 14+5}{14}\right)-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Multiply 8 and 7 to get 56.
-\left(-\frac{62}{7}\right)-\left(-\frac{7\times 14+5}{14}\right)-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Add 56 and 6 to get 62.
\frac{62}{7}-\left(-\frac{7\times 14+5}{14}\right)-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
The opposite of -\frac{62}{7} is \frac{62}{7}.
\frac{62}{7}-\left(-\frac{98+5}{14}\right)-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Multiply 7 and 14 to get 98.
\frac{62}{7}-\left(-\frac{103}{14}\right)-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Add 98 and 5 to get 103.
\frac{62}{7}+\frac{103}{14}-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
The opposite of -\frac{103}{14} is \frac{103}{14}.
\frac{124}{14}+\frac{103}{14}-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Least common multiple of 7 and 14 is 14. Convert \frac{62}{7} and \frac{103}{14} to fractions with denominator 14.
\frac{124+103}{14}-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Since \frac{124}{14} and \frac{103}{14} have the same denominator, add them by adding their numerators.
\frac{227}{14}-\frac{6\times 7+4}{7}+1-\frac{5\times 14+3}{14}
Add 124 and 103 to get 227.
\frac{227}{14}-\frac{42+4}{7}+1-\frac{5\times 14+3}{14}
Multiply 6 and 7 to get 42.
\frac{227}{14}-\frac{46}{7}+1-\frac{5\times 14+3}{14}
Add 42 and 4 to get 46.
\frac{227}{14}-\frac{92}{14}+1-\frac{5\times 14+3}{14}
Least common multiple of 14 and 7 is 14. Convert \frac{227}{14} and \frac{46}{7} to fractions with denominator 14.
\frac{227-92}{14}+1-\frac{5\times 14+3}{14}
Since \frac{227}{14} and \frac{92}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{135}{14}+1-\frac{5\times 14+3}{14}
Subtract 92 from 227 to get 135.
\frac{135}{14}+\frac{14}{14}-\frac{5\times 14+3}{14}
Convert 1 to fraction \frac{14}{14}.
\frac{135+14}{14}-\frac{5\times 14+3}{14}
Since \frac{135}{14} and \frac{14}{14} have the same denominator, add them by adding their numerators.
\frac{149}{14}-\frac{5\times 14+3}{14}
Add 135 and 14 to get 149.
\frac{149}{14}-\frac{70+3}{14}
Multiply 5 and 14 to get 70.
\frac{149}{14}-\frac{73}{14}
Add 70 and 3 to get 73.
\frac{149-73}{14}
Since \frac{149}{14} and \frac{73}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{76}{14}
Subtract 73 from 149 to get 76.
\frac{38}{7}
Reduce the fraction \frac{76}{14} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}