Evaluate
\frac{1}{7}\approx 0.142857143
Factor
\frac{1}{7} = 0.14285714285714285
Share
Copied to clipboard
-\left(-\frac{56+6}{7}\right)-|-\frac{7\times 14+5}{14}|-\frac{6\times 7+4}{7}+|-\frac{5\times 14+3}{14}|
Multiply 8 and 7 to get 56.
-\left(-\frac{62}{7}\right)-|-\frac{7\times 14+5}{14}|-\frac{6\times 7+4}{7}+|-\frac{5\times 14+3}{14}|
Add 56 and 6 to get 62.
\frac{62}{7}-|-\frac{7\times 14+5}{14}|-\frac{6\times 7+4}{7}+|-\frac{5\times 14+3}{14}|
The opposite of -\frac{62}{7} is \frac{62}{7}.
\frac{62}{7}-|-\frac{98+5}{14}|-\frac{6\times 7+4}{7}+|-\frac{5\times 14+3}{14}|
Multiply 7 and 14 to get 98.
\frac{62}{7}-|-\frac{103}{14}|-\frac{6\times 7+4}{7}+|-\frac{5\times 14+3}{14}|
Add 98 and 5 to get 103.
\frac{62}{7}-\frac{103}{14}-\frac{6\times 7+4}{7}+|-\frac{5\times 14+3}{14}|
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{103}{14} is \frac{103}{14}.
\frac{124}{14}-\frac{103}{14}-\frac{6\times 7+4}{7}+|-\frac{5\times 14+3}{14}|
Least common multiple of 7 and 14 is 14. Convert \frac{62}{7} and \frac{103}{14} to fractions with denominator 14.
\frac{124-103}{14}-\frac{6\times 7+4}{7}+|-\frac{5\times 14+3}{14}|
Since \frac{124}{14} and \frac{103}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{21}{14}-\frac{6\times 7+4}{7}+|-\frac{5\times 14+3}{14}|
Subtract 103 from 124 to get 21.
\frac{3}{2}-\frac{6\times 7+4}{7}+|-\frac{5\times 14+3}{14}|
Reduce the fraction \frac{21}{14} to lowest terms by extracting and canceling out 7.
\frac{3}{2}-\frac{42+4}{7}+|-\frac{5\times 14+3}{14}|
Multiply 6 and 7 to get 42.
\frac{3}{2}-\frac{46}{7}+|-\frac{5\times 14+3}{14}|
Add 42 and 4 to get 46.
\frac{21}{14}-\frac{92}{14}+|-\frac{5\times 14+3}{14}|
Least common multiple of 2 and 7 is 14. Convert \frac{3}{2} and \frac{46}{7} to fractions with denominator 14.
\frac{21-92}{14}+|-\frac{5\times 14+3}{14}|
Since \frac{21}{14} and \frac{92}{14} have the same denominator, subtract them by subtracting their numerators.
-\frac{71}{14}+|-\frac{5\times 14+3}{14}|
Subtract 92 from 21 to get -71.
-\frac{71}{14}+|-\frac{70+3}{14}|
Multiply 5 and 14 to get 70.
-\frac{71}{14}+|-\frac{73}{14}|
Add 70 and 3 to get 73.
-\frac{71}{14}+\frac{73}{14}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{73}{14} is \frac{73}{14}.
\frac{-71+73}{14}
Since -\frac{71}{14} and \frac{73}{14} have the same denominator, add them by adding their numerators.
\frac{2}{14}
Add -71 and 73 to get 2.
\frac{1}{7}
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}