Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\frac{-\left(-8\right)}{\frac{1\times 9+7}{9}}\left(-\frac{4}{3}\right)^{2}
Calculate -2 to the power of 3 and get -8.
\frac{8}{\frac{1\times 9+7}{9}}\left(-\frac{4}{3}\right)^{2}
The opposite of -8 is 8.
\frac{8}{\frac{9+7}{9}}\left(-\frac{4}{3}\right)^{2}
Multiply 1 and 9 to get 9.
\frac{8}{\frac{16}{9}}\left(-\frac{4}{3}\right)^{2}
Add 9 and 7 to get 16.
8\times \frac{9}{16}\left(-\frac{4}{3}\right)^{2}
Divide 8 by \frac{16}{9} by multiplying 8 by the reciprocal of \frac{16}{9}.
\frac{8\times 9}{16}\left(-\frac{4}{3}\right)^{2}
Express 8\times \frac{9}{16} as a single fraction.
\frac{72}{16}\left(-\frac{4}{3}\right)^{2}
Multiply 8 and 9 to get 72.
\frac{9}{2}\left(-\frac{4}{3}\right)^{2}
Reduce the fraction \frac{72}{16} to lowest terms by extracting and canceling out 8.
\frac{9}{2}\times \frac{16}{9}
Calculate -\frac{4}{3} to the power of 2 and get \frac{16}{9}.
\frac{9\times 16}{2\times 9}
Multiply \frac{9}{2} times \frac{16}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{16}{2}
Cancel out 9 in both numerator and denominator.
8
Divide 16 by 2 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}