Evaluate
\frac{269}{24}\approx 11.208333333
Factor
\frac{269}{2 ^ {3} \cdot 3} = 11\frac{5}{24} = 11.208333333333334
Share
Copied to clipboard
-\left(-\frac{16+5}{8}\right)-\left(-\frac{8\times 12+7}{12}\right)
Multiply 2 and 8 to get 16.
-\left(-\frac{21}{8}\right)-\left(-\frac{8\times 12+7}{12}\right)
Add 16 and 5 to get 21.
\frac{21}{8}-\left(-\frac{8\times 12+7}{12}\right)
The opposite of -\frac{21}{8} is \frac{21}{8}.
\frac{21}{8}-\left(-\frac{96+7}{12}\right)
Multiply 8 and 12 to get 96.
\frac{21}{8}-\left(-\frac{103}{12}\right)
Add 96 and 7 to get 103.
\frac{21}{8}+\frac{103}{12}
The opposite of -\frac{103}{12} is \frac{103}{12}.
\frac{63}{24}+\frac{206}{24}
Least common multiple of 8 and 12 is 24. Convert \frac{21}{8} and \frac{103}{12} to fractions with denominator 24.
\frac{63+206}{24}
Since \frac{63}{24} and \frac{206}{24} have the same denominator, add them by adding their numerators.
\frac{269}{24}
Add 63 and 206 to get 269.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}