Evaluate
\frac{127}{30}\approx 4.233333333
Factor
\frac{127}{2 \cdot 3 \cdot 5} = 4\frac{7}{30} = 4.233333333333333
Share
Copied to clipboard
-\left(-\frac{15+8}{15}\right)-\left(-\frac{2\times 10+7}{10}\right)
Multiply 1 and 15 to get 15.
-\left(-\frac{23}{15}\right)-\left(-\frac{2\times 10+7}{10}\right)
Add 15 and 8 to get 23.
\frac{23}{15}-\left(-\frac{2\times 10+7}{10}\right)
The opposite of -\frac{23}{15} is \frac{23}{15}.
\frac{23}{15}-\left(-\frac{20+7}{10}\right)
Multiply 2 and 10 to get 20.
\frac{23}{15}-\left(-\frac{27}{10}\right)
Add 20 and 7 to get 27.
\frac{23}{15}+\frac{27}{10}
The opposite of -\frac{27}{10} is \frac{27}{10}.
\frac{46}{30}+\frac{81}{30}
Least common multiple of 15 and 10 is 30. Convert \frac{23}{15} and \frac{27}{10} to fractions with denominator 30.
\frac{46+81}{30}
Since \frac{46}{30} and \frac{81}{30} have the same denominator, add them by adding their numerators.
\frac{127}{30}
Add 46 and 81 to get 127.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}