Solve for p
p\in \mathrm{R}
q\neq 0
Solve for q
q\neq 0
Share
Copied to clipboard
-q\left(-\frac{p}{q}\right)=p+0
Multiply both sides of the equation by q.
-\frac{-qp}{q}=p+0
Express q\left(-\frac{p}{q}\right) as a single fraction.
-\left(-p\right)=p+0
Cancel out q in both numerator and denominator.
p=p+0
The opposite of -p is p.
p=p
Anything plus zero gives itself.
p-p=0
Subtract p from both sides.
0=0
Combine p and -p to get 0.
\text{true}
Compare 0 and 0.
p\in \mathrm{R}
This is true for any p.
-q\left(-\frac{p}{q}\right)=p+0
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by q.
-\frac{-qp}{q}=p+0
Express q\left(-\frac{p}{q}\right) as a single fraction.
-\frac{-qp}{q}=p
Anything plus zero gives itself.
qp=pq
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by q.
\text{true}
Reorder the terms.
q\in \mathrm{R}
This is true for any q.
q\in \mathrm{R}\setminus 0
Variable q cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}