Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{9}{16}x^{8}+0.75x^{2}\left(\frac{1}{3}x^{2}+\frac{4}{3}\right)\left(\frac{1}{4}x^{4}-x^{2}\right)
Calculate -\frac{4}{3} to the power of -2 and get \frac{9}{16}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}x^{4}+x^{2}\right)\left(\frac{1}{4}x^{4}-x^{2}\right)
Use the distributive property to multiply 0.75x^{2} by \frac{1}{3}x^{2}+\frac{4}{3}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}x^{4}\right)^{2}-\left(x^{2}\right)^{2}
Consider \left(\frac{1}{4}x^{4}+x^{2}\right)\left(\frac{1}{4}x^{4}-x^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}x^{4}\right)^{2}-x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}\right)^{2}\left(x^{4}\right)^{2}-x^{4}
Expand \left(\frac{1}{4}x^{4}\right)^{2}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}\right)^{2}x^{8}-x^{4}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
-\frac{9}{16}x^{8}+\frac{1}{16}x^{8}-x^{4}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
-\frac{1}{2}x^{8}-x^{4}
Combine -\frac{9}{16}x^{8} and \frac{1}{16}x^{8} to get -\frac{1}{2}x^{8}.
-\frac{9}{16}x^{8}+0.75x^{2}\left(\frac{1}{3}x^{2}+\frac{4}{3}\right)\left(\frac{1}{4}x^{4}-x^{2}\right)
Calculate -\frac{4}{3} to the power of -2 and get \frac{9}{16}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}x^{4}+x^{2}\right)\left(\frac{1}{4}x^{4}-x^{2}\right)
Use the distributive property to multiply 0.75x^{2} by \frac{1}{3}x^{2}+\frac{4}{3}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}x^{4}\right)^{2}-\left(x^{2}\right)^{2}
Consider \left(\frac{1}{4}x^{4}+x^{2}\right)\left(\frac{1}{4}x^{4}-x^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}x^{4}\right)^{2}-x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}\right)^{2}\left(x^{4}\right)^{2}-x^{4}
Expand \left(\frac{1}{4}x^{4}\right)^{2}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}\right)^{2}x^{8}-x^{4}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
-\frac{9}{16}x^{8}+\frac{1}{16}x^{8}-x^{4}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
-\frac{1}{2}x^{8}-x^{4}
Combine -\frac{9}{16}x^{8} and \frac{1}{16}x^{8} to get -\frac{1}{2}x^{8}.