Evaluate
-\frac{x^{8}}{2}-x^{4}
Expand
-\frac{x^{8}}{2}-x^{4}
Graph
Share
Copied to clipboard
-\frac{9}{16}x^{8}+0.75x^{2}\left(\frac{1}{3}x^{2}+\frac{4}{3}\right)\left(\frac{1}{4}x^{4}-x^{2}\right)
Calculate -\frac{4}{3} to the power of -2 and get \frac{9}{16}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}x^{4}+x^{2}\right)\left(\frac{1}{4}x^{4}-x^{2}\right)
Use the distributive property to multiply 0.75x^{2} by \frac{1}{3}x^{2}+\frac{4}{3}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}x^{4}\right)^{2}-\left(x^{2}\right)^{2}
Consider \left(\frac{1}{4}x^{4}+x^{2}\right)\left(\frac{1}{4}x^{4}-x^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}x^{4}\right)^{2}-x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}\right)^{2}\left(x^{4}\right)^{2}-x^{4}
Expand \left(\frac{1}{4}x^{4}\right)^{2}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}\right)^{2}x^{8}-x^{4}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
-\frac{9}{16}x^{8}+\frac{1}{16}x^{8}-x^{4}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
-\frac{1}{2}x^{8}-x^{4}
Combine -\frac{9}{16}x^{8} and \frac{1}{16}x^{8} to get -\frac{1}{2}x^{8}.
-\frac{9}{16}x^{8}+0.75x^{2}\left(\frac{1}{3}x^{2}+\frac{4}{3}\right)\left(\frac{1}{4}x^{4}-x^{2}\right)
Calculate -\frac{4}{3} to the power of -2 and get \frac{9}{16}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}x^{4}+x^{2}\right)\left(\frac{1}{4}x^{4}-x^{2}\right)
Use the distributive property to multiply 0.75x^{2} by \frac{1}{3}x^{2}+\frac{4}{3}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}x^{4}\right)^{2}-\left(x^{2}\right)^{2}
Consider \left(\frac{1}{4}x^{4}+x^{2}\right)\left(\frac{1}{4}x^{4}-x^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}x^{4}\right)^{2}-x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}\right)^{2}\left(x^{4}\right)^{2}-x^{4}
Expand \left(\frac{1}{4}x^{4}\right)^{2}.
-\frac{9}{16}x^{8}+\left(\frac{1}{4}\right)^{2}x^{8}-x^{4}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
-\frac{9}{16}x^{8}+\frac{1}{16}x^{8}-x^{4}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
-\frac{1}{2}x^{8}-x^{4}
Combine -\frac{9}{16}x^{8} and \frac{1}{16}x^{8} to get -\frac{1}{2}x^{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}