Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(-\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)
To find the opposite of \sqrt{5}+\sqrt{3}, find the opposite of each term.
-\left(\sqrt{5}\right)^{2}+\sqrt{3}\sqrt{5}-\sqrt{3}\sqrt{5}+\left(\sqrt{3}\right)^{2}
Apply the distributive property by multiplying each term of -\sqrt{5}-\sqrt{3} by each term of \sqrt{5}-\sqrt{3}.
-5+\sqrt{3}\sqrt{5}-\sqrt{3}\sqrt{5}+\left(\sqrt{3}\right)^{2}
The square of \sqrt{5} is 5.
-5+\sqrt{15}-\sqrt{3}\sqrt{5}+\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
-5+\sqrt{15}-\sqrt{15}+\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
-5+\left(\sqrt{3}\right)^{2}
Combine \sqrt{15} and -\sqrt{15} to get 0.
-5+3
The square of \sqrt{3} is 3.
-2
Add -5 and 3 to get -2.