Evaluate
3
Factor
3
Quiz
Arithmetic
5 problems similar to:
- ( \sqrt { 2 } - \sqrt { 5 } ) \cdot ( \sqrt { 2 } + \sqrt { 5 } )
Share
Copied to clipboard
\left(-\sqrt{2}-\left(-\sqrt{5}\right)\right)\left(\sqrt{2}+\sqrt{5}\right)
To find the opposite of \sqrt{2}-\sqrt{5}, find the opposite of each term.
\left(-\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right)
The opposite of -\sqrt{5} is \sqrt{5}.
-\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{5}+\sqrt{5}\sqrt{2}+\left(\sqrt{5}\right)^{2}
Apply the distributive property by multiplying each term of -\sqrt{2}+\sqrt{5} by each term of \sqrt{2}+\sqrt{5}.
-2-\sqrt{2}\sqrt{5}+\sqrt{5}\sqrt{2}+\left(\sqrt{5}\right)^{2}
The square of \sqrt{2} is 2.
-2-\sqrt{10}+\sqrt{5}\sqrt{2}+\left(\sqrt{5}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
-2-\sqrt{10}+\sqrt{10}+\left(\sqrt{5}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
-2+\left(\sqrt{5}\right)^{2}
Combine -\sqrt{10} and \sqrt{10} to get 0.
-2+5
The square of \sqrt{5} is 5.
3
Add -2 and 5 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}