Evaluate (complex solution)
2\left(\sqrt{6}-2\right)\approx 0.898979486
Real Part (complex solution)
2 {(\sqrt{6} - 2)} = 0.898979486
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\left(-\left(i+\sqrt{-2}-\sqrt{-3}\right)\right)\left(\sqrt{-1}-\sqrt{-2}+\sqrt{-3}\right)
Calculate the square root of -1 and get i.
\left(-\left(i+\sqrt{2}i-\sqrt{-3}\right)\right)\left(\sqrt{-1}-\sqrt{-2}+\sqrt{-3}\right)
Factor -2=2\left(-1\right). Rewrite the square root of the product \sqrt{2\left(-1\right)} as the product of square roots \sqrt{2}\sqrt{-1}. By definition, the square root of -1 is i.
\left(-\left(i+\sqrt{2}i-\sqrt{3}i\right)\right)\left(\sqrt{-1}-\sqrt{-2}+\sqrt{-3}\right)
Factor -3=3\left(-1\right). Rewrite the square root of the product \sqrt{3\left(-1\right)} as the product of square roots \sqrt{3}\sqrt{-1}. By definition, the square root of -1 is i.
\left(-\left(i+\sqrt{2}i-i\sqrt{3}\right)\right)\left(\sqrt{-1}-\sqrt{-2}+\sqrt{-3}\right)
Multiply -1 and i to get -i.
\left(-i-\sqrt{2}i+i\sqrt{3}\right)\left(\sqrt{-1}-\sqrt{-2}+\sqrt{-3}\right)
To find the opposite of i+\sqrt{2}i-i\sqrt{3}, find the opposite of each term.
\left(-i-i\sqrt{2}+i\sqrt{3}\right)\left(\sqrt{-1}-\sqrt{-2}+\sqrt{-3}\right)
Multiply -1 and i to get -i.
\left(-i-i\sqrt{2}+i\sqrt{3}\right)\left(i-\sqrt{-2}+\sqrt{-3}\right)
Calculate the square root of -1 and get i.
\left(-i-i\sqrt{2}+i\sqrt{3}\right)\left(i-\sqrt{2}i+\sqrt{-3}\right)
Factor -2=2\left(-1\right). Rewrite the square root of the product \sqrt{2\left(-1\right)} as the product of square roots \sqrt{2}\sqrt{-1}. By definition, the square root of -1 is i.
\left(-i-i\sqrt{2}+i\sqrt{3}\right)\left(i-i\sqrt{2}+\sqrt{-3}\right)
Multiply -1 and i to get -i.
\left(-i-i\sqrt{2}+i\sqrt{3}\right)\left(i-i\sqrt{2}+\sqrt{3}i\right)
Factor -3=3\left(-1\right). Rewrite the square root of the product \sqrt{3\left(-1\right)} as the product of square roots \sqrt{3}\sqrt{-1}. By definition, the square root of -1 is i.
1-\sqrt{2}-i\sqrt{3}i+\sqrt{2}-\left(\sqrt{2}\right)^{2}+\sqrt{3}\sqrt{2}-\sqrt{3}+\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}
Apply the distributive property by multiplying each term of -i-i\sqrt{2}+i\sqrt{3} by each term of i-i\sqrt{2}+\sqrt{3}i.
1-\sqrt{2}+\sqrt{3}+\sqrt{2}-\left(\sqrt{2}\right)^{2}+\sqrt{3}\sqrt{2}-\sqrt{3}+\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}
Multiply -i and i to get 1.
1+\sqrt{3}-\left(\sqrt{2}\right)^{2}+\sqrt{3}\sqrt{2}-\sqrt{3}+\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}
Combine -\sqrt{2} and \sqrt{2} to get 0.
1+\sqrt{3}-2+\sqrt{3}\sqrt{2}-\sqrt{3}+\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
-1+\sqrt{3}+\sqrt{3}\sqrt{2}-\sqrt{3}+\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}
Subtract 2 from 1 to get -1.
-1+\sqrt{3}+\sqrt{6}-\sqrt{3}+\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-1+\sqrt{6}+\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}
Combine \sqrt{3} and -\sqrt{3} to get 0.
-1+\sqrt{6}+\sqrt{6}-\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-1+2\sqrt{6}-\left(\sqrt{3}\right)^{2}
Combine \sqrt{6} and \sqrt{6} to get 2\sqrt{6}.
-1+2\sqrt{6}-3
The square of \sqrt{3} is 3.
-4+2\sqrt{6}
Subtract 3 from -1 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}