Skip to main content
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image
Solve for λ (complex solution)
Tick mark Image
Solve for λ
Tick mark Image

Similar Problems from Web Search

Share

\left(-\lambda +1\right)\left(\lambda ^{2}-b\lambda +5\right)=0
To find the opposite of \lambda -1, find the opposite of each term.
-\lambda ^{3}+\lambda ^{2}b-5\lambda +\lambda ^{2}-b\lambda +5=0
Use the distributive property to multiply -\lambda +1 by \lambda ^{2}-b\lambda +5.
\lambda ^{2}b-5\lambda +\lambda ^{2}-b\lambda +5=\lambda ^{3}
Add \lambda ^{3} to both sides. Anything plus zero gives itself.
\lambda ^{2}b+\lambda ^{2}-b\lambda +5=\lambda ^{3}+5\lambda
Add 5\lambda to both sides.
\lambda ^{2}b-b\lambda +5=\lambda ^{3}+5\lambda -\lambda ^{2}
Subtract \lambda ^{2} from both sides.
\lambda ^{2}b-b\lambda =\lambda ^{3}+5\lambda -\lambda ^{2}-5
Subtract 5 from both sides.
\left(\lambda ^{2}-\lambda \right)b=\lambda ^{3}+5\lambda -\lambda ^{2}-5
Combine all terms containing b.
\left(\lambda ^{2}-\lambda \right)b=\lambda ^{3}-\lambda ^{2}+5\lambda -5
The equation is in standard form.
\frac{\left(\lambda ^{2}-\lambda \right)b}{\lambda ^{2}-\lambda }=\frac{\left(\lambda -1\right)\left(\lambda ^{2}+5\right)}{\lambda ^{2}-\lambda }
Divide both sides by \lambda ^{2}-\lambda .
b=\frac{\left(\lambda -1\right)\left(\lambda ^{2}+5\right)}{\lambda ^{2}-\lambda }
Dividing by \lambda ^{2}-\lambda undoes the multiplication by \lambda ^{2}-\lambda .
b=\lambda +\frac{5}{\lambda }
Divide \left(-1+\lambda \right)\left(5+\lambda ^{2}\right) by \lambda ^{2}-\lambda .
\left(-\lambda +1\right)\left(\lambda ^{2}-b\lambda +5\right)=0
To find the opposite of \lambda -1, find the opposite of each term.
-\lambda ^{3}+\lambda ^{2}b-5\lambda +\lambda ^{2}-b\lambda +5=0
Use the distributive property to multiply -\lambda +1 by \lambda ^{2}-b\lambda +5.
\lambda ^{2}b-5\lambda +\lambda ^{2}-b\lambda +5=\lambda ^{3}
Add \lambda ^{3} to both sides. Anything plus zero gives itself.
\lambda ^{2}b+\lambda ^{2}-b\lambda +5=\lambda ^{3}+5\lambda
Add 5\lambda to both sides.
\lambda ^{2}b-b\lambda +5=\lambda ^{3}+5\lambda -\lambda ^{2}
Subtract \lambda ^{2} from both sides.
\lambda ^{2}b-b\lambda =\lambda ^{3}+5\lambda -\lambda ^{2}-5
Subtract 5 from both sides.
\left(\lambda ^{2}-\lambda \right)b=\lambda ^{3}+5\lambda -\lambda ^{2}-5
Combine all terms containing b.
\left(\lambda ^{2}-\lambda \right)b=\lambda ^{3}-\lambda ^{2}+5\lambda -5
The equation is in standard form.
\frac{\left(\lambda ^{2}-\lambda \right)b}{\lambda ^{2}-\lambda }=\frac{\left(\lambda -1\right)\left(\lambda ^{2}+5\right)}{\lambda ^{2}-\lambda }
Divide both sides by \lambda ^{2}-\lambda .
b=\frac{\left(\lambda -1\right)\left(\lambda ^{2}+5\right)}{\lambda ^{2}-\lambda }
Dividing by \lambda ^{2}-\lambda undoes the multiplication by \lambda ^{2}-\lambda .
b=\lambda +\frac{5}{\lambda }
Divide \left(-1+\lambda \right)\left(5+\lambda ^{2}\right) by \lambda ^{2}-\lambda .