Solve for b (complex solution)
\left\{\begin{matrix}b=\lambda +\frac{5}{\lambda }\text{, }&\lambda \neq 0\\b\in \mathrm{C}\text{, }&\lambda =1\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\lambda +\frac{5}{\lambda }\text{, }&\lambda \neq 0\\b\in \mathrm{R}\text{, }&\lambda =1\end{matrix}\right.
Solve for λ (complex solution)
\lambda =\frac{-\sqrt{b^{2}-20}+b}{2}
\lambda =1
\lambda =\frac{\sqrt{b^{2}-20}+b}{2}
Solve for λ
\left\{\begin{matrix}\\\lambda =1\text{, }&\text{unconditionally}\\\lambda =\frac{\sqrt{b^{2}-20}+b}{2}\text{; }\lambda =\frac{-\sqrt{b^{2}-20}+b}{2}\text{, }&|b|\geq 2\sqrt{5}\end{matrix}\right.
Share
Copied to clipboard
\left(-\lambda +1\right)\left(\lambda ^{2}-b\lambda +5\right)=0
To find the opposite of \lambda -1, find the opposite of each term.
-\lambda ^{3}+\lambda ^{2}b-5\lambda +\lambda ^{2}-b\lambda +5=0
Use the distributive property to multiply -\lambda +1 by \lambda ^{2}-b\lambda +5.
\lambda ^{2}b-5\lambda +\lambda ^{2}-b\lambda +5=\lambda ^{3}
Add \lambda ^{3} to both sides. Anything plus zero gives itself.
\lambda ^{2}b+\lambda ^{2}-b\lambda +5=\lambda ^{3}+5\lambda
Add 5\lambda to both sides.
\lambda ^{2}b-b\lambda +5=\lambda ^{3}+5\lambda -\lambda ^{2}
Subtract \lambda ^{2} from both sides.
\lambda ^{2}b-b\lambda =\lambda ^{3}+5\lambda -\lambda ^{2}-5
Subtract 5 from both sides.
\left(\lambda ^{2}-\lambda \right)b=\lambda ^{3}+5\lambda -\lambda ^{2}-5
Combine all terms containing b.
\left(\lambda ^{2}-\lambda \right)b=\lambda ^{3}-\lambda ^{2}+5\lambda -5
The equation is in standard form.
\frac{\left(\lambda ^{2}-\lambda \right)b}{\lambda ^{2}-\lambda }=\frac{\left(\lambda -1\right)\left(\lambda ^{2}+5\right)}{\lambda ^{2}-\lambda }
Divide both sides by \lambda ^{2}-\lambda .
b=\frac{\left(\lambda -1\right)\left(\lambda ^{2}+5\right)}{\lambda ^{2}-\lambda }
Dividing by \lambda ^{2}-\lambda undoes the multiplication by \lambda ^{2}-\lambda .
b=\lambda +\frac{5}{\lambda }
Divide \left(-1+\lambda \right)\left(5+\lambda ^{2}\right) by \lambda ^{2}-\lambda .
\left(-\lambda +1\right)\left(\lambda ^{2}-b\lambda +5\right)=0
To find the opposite of \lambda -1, find the opposite of each term.
-\lambda ^{3}+\lambda ^{2}b-5\lambda +\lambda ^{2}-b\lambda +5=0
Use the distributive property to multiply -\lambda +1 by \lambda ^{2}-b\lambda +5.
\lambda ^{2}b-5\lambda +\lambda ^{2}-b\lambda +5=\lambda ^{3}
Add \lambda ^{3} to both sides. Anything plus zero gives itself.
\lambda ^{2}b+\lambda ^{2}-b\lambda +5=\lambda ^{3}+5\lambda
Add 5\lambda to both sides.
\lambda ^{2}b-b\lambda +5=\lambda ^{3}+5\lambda -\lambda ^{2}
Subtract \lambda ^{2} from both sides.
\lambda ^{2}b-b\lambda =\lambda ^{3}+5\lambda -\lambda ^{2}-5
Subtract 5 from both sides.
\left(\lambda ^{2}-\lambda \right)b=\lambda ^{3}+5\lambda -\lambda ^{2}-5
Combine all terms containing b.
\left(\lambda ^{2}-\lambda \right)b=\lambda ^{3}-\lambda ^{2}+5\lambda -5
The equation is in standard form.
\frac{\left(\lambda ^{2}-\lambda \right)b}{\lambda ^{2}-\lambda }=\frac{\left(\lambda -1\right)\left(\lambda ^{2}+5\right)}{\lambda ^{2}-\lambda }
Divide both sides by \lambda ^{2}-\lambda .
b=\frac{\left(\lambda -1\right)\left(\lambda ^{2}+5\right)}{\lambda ^{2}-\lambda }
Dividing by \lambda ^{2}-\lambda undoes the multiplication by \lambda ^{2}-\lambda .
b=\lambda +\frac{5}{\lambda }
Divide \left(-1+\lambda \right)\left(5+\lambda ^{2}\right) by \lambda ^{2}-\lambda .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}