Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-\left(\frac{6}{5}+\frac{2\times 8}{3}\right)\right)\left(-\frac{1}{4}-3\right)}{\frac{5}{2}}
Express 2\times \frac{8}{3} as a single fraction.
\frac{\left(-\left(\frac{6}{5}+\frac{16}{3}\right)\right)\left(-\frac{1}{4}-3\right)}{\frac{5}{2}}
Multiply 2 and 8 to get 16.
\frac{\left(-\left(\frac{18}{15}+\frac{80}{15}\right)\right)\left(-\frac{1}{4}-3\right)}{\frac{5}{2}}
Least common multiple of 5 and 3 is 15. Convert \frac{6}{5} and \frac{16}{3} to fractions with denominator 15.
\frac{\left(-\frac{18+80}{15}\right)\left(-\frac{1}{4}-3\right)}{\frac{5}{2}}
Since \frac{18}{15} and \frac{80}{15} have the same denominator, add them by adding their numerators.
\frac{-\frac{98}{15}\left(-\frac{1}{4}-3\right)}{\frac{5}{2}}
Add 18 and 80 to get 98.
\frac{-\frac{98}{15}\left(-\frac{1}{4}-\frac{12}{4}\right)}{\frac{5}{2}}
Convert 3 to fraction \frac{12}{4}.
\frac{-\frac{98}{15}\times \frac{-1-12}{4}}{\frac{5}{2}}
Since -\frac{1}{4} and \frac{12}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{98}{15}\left(-\frac{13}{4}\right)}{\frac{5}{2}}
Subtract 12 from -1 to get -13.
\frac{\frac{-98\left(-13\right)}{15\times 4}}{\frac{5}{2}}
Multiply -\frac{98}{15} times -\frac{13}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1274}{60}}{\frac{5}{2}}
Do the multiplications in the fraction \frac{-98\left(-13\right)}{15\times 4}.
\frac{\frac{637}{30}}{\frac{5}{2}}
Reduce the fraction \frac{1274}{60} to lowest terms by extracting and canceling out 2.
\frac{637}{30}\times \frac{2}{5}
Divide \frac{637}{30} by \frac{5}{2} by multiplying \frac{637}{30} by the reciprocal of \frac{5}{2}.
\frac{637\times 2}{30\times 5}
Multiply \frac{637}{30} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1274}{150}
Do the multiplications in the fraction \frac{637\times 2}{30\times 5}.
\frac{637}{75}
Reduce the fraction \frac{1274}{150} to lowest terms by extracting and canceling out 2.