Evaluate
-\frac{16a^{2}}{9}
Expand
-\frac{16a^{2}}{9}
Share
Copied to clipboard
\left(-\frac{4^{2}}{\left(3a\right)^{2}}\right)a^{4}
To raise \frac{4}{3a} to a power, raise both numerator and denominator to the power and then divide.
\frac{-4^{2}a^{4}}{\left(3a\right)^{2}}
Express \left(-\frac{4^{2}}{\left(3a\right)^{2}}\right)a^{4} as a single fraction.
\frac{-16a^{4}}{\left(3a\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{-16a^{4}}{3^{2}a^{2}}
Expand \left(3a\right)^{2}.
\frac{-16a^{4}}{9a^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{-16a^{2}}{9}
Cancel out a^{2} in both numerator and denominator.
\left(-\frac{4^{2}}{\left(3a\right)^{2}}\right)a^{4}
To raise \frac{4}{3a} to a power, raise both numerator and denominator to the power and then divide.
\frac{-4^{2}a^{4}}{\left(3a\right)^{2}}
Express \left(-\frac{4^{2}}{\left(3a\right)^{2}}\right)a^{4} as a single fraction.
\frac{-16a^{4}}{\left(3a\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{-16a^{4}}{3^{2}a^{2}}
Expand \left(3a\right)^{2}.
\frac{-16a^{4}}{9a^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{-16a^{2}}{9}
Cancel out a^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}