Solve for t
t=-\frac{1}{8}=-0.125
Share
Copied to clipboard
-\left(\frac{16}{9}t^{2}-\frac{8}{3}t+1\right)=\frac{1}{9}\left(28t-\frac{35}{4}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{4}{3}t-1\right)^{2}.
-\frac{16}{9}t^{2}+\frac{8}{3}t-1=\frac{1}{9}\left(28t-\frac{35}{4}\right)
To find the opposite of \frac{16}{9}t^{2}-\frac{8}{3}t+1, find the opposite of each term.
-\frac{16}{9}t^{2}+\frac{8}{3}t-1=\frac{28}{9}t-\frac{35}{36}
Use the distributive property to multiply \frac{1}{9} by 28t-\frac{35}{4}.
-\frac{16}{9}t^{2}+\frac{8}{3}t-1-\frac{28}{9}t=-\frac{35}{36}
Subtract \frac{28}{9}t from both sides.
-\frac{16}{9}t^{2}-\frac{4}{9}t-1=-\frac{35}{36}
Combine \frac{8}{3}t and -\frac{28}{9}t to get -\frac{4}{9}t.
-\frac{16}{9}t^{2}-\frac{4}{9}t-1+\frac{35}{36}=0
Add \frac{35}{36} to both sides.
-\frac{16}{9}t^{2}-\frac{4}{9}t-\frac{1}{36}=0
Add -1 and \frac{35}{36} to get -\frac{1}{36}.
t=\frac{-\left(-\frac{4}{9}\right)±\sqrt{\left(-\frac{4}{9}\right)^{2}-4\left(-\frac{16}{9}\right)\left(-\frac{1}{36}\right)}}{2\left(-\frac{16}{9}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{16}{9} for a, -\frac{4}{9} for b, and -\frac{1}{36} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{4}{9}\right)±\sqrt{\frac{16}{81}-4\left(-\frac{16}{9}\right)\left(-\frac{1}{36}\right)}}{2\left(-\frac{16}{9}\right)}
Square -\frac{4}{9} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\left(-\frac{4}{9}\right)±\sqrt{\frac{16}{81}+\frac{64}{9}\left(-\frac{1}{36}\right)}}{2\left(-\frac{16}{9}\right)}
Multiply -4 times -\frac{16}{9}.
t=\frac{-\left(-\frac{4}{9}\right)±\sqrt{\frac{16-16}{81}}}{2\left(-\frac{16}{9}\right)}
Multiply \frac{64}{9} times -\frac{1}{36} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{-\left(-\frac{4}{9}\right)±\sqrt{0}}{2\left(-\frac{16}{9}\right)}
Add \frac{16}{81} to -\frac{16}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=-\frac{-\frac{4}{9}}{2\left(-\frac{16}{9}\right)}
Take the square root of 0.
t=\frac{\frac{4}{9}}{2\left(-\frac{16}{9}\right)}
The opposite of -\frac{4}{9} is \frac{4}{9}.
t=\frac{\frac{4}{9}}{-\frac{32}{9}}
Multiply 2 times -\frac{16}{9}.
t=-\frac{1}{8}
Divide \frac{4}{9} by -\frac{32}{9} by multiplying \frac{4}{9} by the reciprocal of -\frac{32}{9}.
-\left(\frac{16}{9}t^{2}-\frac{8}{3}t+1\right)=\frac{1}{9}\left(28t-\frac{35}{4}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{4}{3}t-1\right)^{2}.
-\frac{16}{9}t^{2}+\frac{8}{3}t-1=\frac{1}{9}\left(28t-\frac{35}{4}\right)
To find the opposite of \frac{16}{9}t^{2}-\frac{8}{3}t+1, find the opposite of each term.
-\frac{16}{9}t^{2}+\frac{8}{3}t-1=\frac{28}{9}t-\frac{35}{36}
Use the distributive property to multiply \frac{1}{9} by 28t-\frac{35}{4}.
-\frac{16}{9}t^{2}+\frac{8}{3}t-1-\frac{28}{9}t=-\frac{35}{36}
Subtract \frac{28}{9}t from both sides.
-\frac{16}{9}t^{2}-\frac{4}{9}t-1=-\frac{35}{36}
Combine \frac{8}{3}t and -\frac{28}{9}t to get -\frac{4}{9}t.
-\frac{16}{9}t^{2}-\frac{4}{9}t=-\frac{35}{36}+1
Add 1 to both sides.
-\frac{16}{9}t^{2}-\frac{4}{9}t=\frac{1}{36}
Add -\frac{35}{36} and 1 to get \frac{1}{36}.
\frac{-\frac{16}{9}t^{2}-\frac{4}{9}t}{-\frac{16}{9}}=\frac{\frac{1}{36}}{-\frac{16}{9}}
Divide both sides of the equation by -\frac{16}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\left(-\frac{\frac{4}{9}}{-\frac{16}{9}}\right)t=\frac{\frac{1}{36}}{-\frac{16}{9}}
Dividing by -\frac{16}{9} undoes the multiplication by -\frac{16}{9}.
t^{2}+\frac{1}{4}t=\frac{\frac{1}{36}}{-\frac{16}{9}}
Divide -\frac{4}{9} by -\frac{16}{9} by multiplying -\frac{4}{9} by the reciprocal of -\frac{16}{9}.
t^{2}+\frac{1}{4}t=-\frac{1}{64}
Divide \frac{1}{36} by -\frac{16}{9} by multiplying \frac{1}{36} by the reciprocal of -\frac{16}{9}.
t^{2}+\frac{1}{4}t+\left(\frac{1}{8}\right)^{2}=-\frac{1}{64}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{1}{4}t+\frac{1}{64}=\frac{-1+1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{1}{4}t+\frac{1}{64}=0
Add -\frac{1}{64} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{1}{8}\right)^{2}=0
Factor t^{2}+\frac{1}{4}t+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{1}{8}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
t+\frac{1}{8}=0 t+\frac{1}{8}=0
Simplify.
t=-\frac{1}{8} t=-\frac{1}{8}
Subtract \frac{1}{8} from both sides of the equation.
t=-\frac{1}{8}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}