Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-\left(\frac{1\times 21}{63\times 5}-\frac{1}{63}\times \frac{9}{4}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Multiply \frac{1}{63} times \frac{21}{5} by multiplying numerator times numerator and denominator times denominator.
-\left(\frac{21}{315}-\frac{1}{63}\times \frac{9}{4}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Do the multiplications in the fraction \frac{1\times 21}{63\times 5}.
-\left(\frac{1}{15}-\frac{1}{63}\times \frac{9}{4}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Reduce the fraction \frac{21}{315} to lowest terms by extracting and canceling out 21.
-\left(\frac{1}{15}-\frac{1\times 9}{63\times 4}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Multiply \frac{1}{63} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
-\left(\frac{1}{15}-\frac{9}{252}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Do the multiplications in the fraction \frac{1\times 9}{63\times 4}.
-\left(\frac{1}{15}-\frac{1}{28}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Reduce the fraction \frac{9}{252} to lowest terms by extracting and canceling out 9.
-\left(\frac{28}{420}-\frac{15}{420}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Least common multiple of 15 and 28 is 420. Convert \frac{1}{15} and \frac{1}{28} to fractions with denominator 420.
-\left(\frac{28-15}{420}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Since \frac{28}{420} and \frac{15}{420} have the same denominator, subtract them by subtracting their numerators.
-\left(\frac{13}{420}+\frac{1}{63}\times \frac{7}{6}-\frac{1}{63}\times \frac{3}{2}\right)
Subtract 15 from 28 to get 13.
-\left(\frac{13}{420}+\frac{1\times 7}{63\times 6}-\frac{1}{63}\times \frac{3}{2}\right)
Multiply \frac{1}{63} times \frac{7}{6} by multiplying numerator times numerator and denominator times denominator.
-\left(\frac{13}{420}+\frac{7}{378}-\frac{1}{63}\times \frac{3}{2}\right)
Do the multiplications in the fraction \frac{1\times 7}{63\times 6}.
-\left(\frac{13}{420}+\frac{1}{54}-\frac{1}{63}\times \frac{3}{2}\right)
Reduce the fraction \frac{7}{378} to lowest terms by extracting and canceling out 7.
-\left(\frac{117}{3780}+\frac{70}{3780}-\frac{1}{63}\times \frac{3}{2}\right)
Least common multiple of 420 and 54 is 3780. Convert \frac{13}{420} and \frac{1}{54} to fractions with denominator 3780.
-\left(\frac{117+70}{3780}-\frac{1}{63}\times \frac{3}{2}\right)
Since \frac{117}{3780} and \frac{70}{3780} have the same denominator, add them by adding their numerators.
-\left(\frac{187}{3780}-\frac{1}{63}\times \frac{3}{2}\right)
Add 117 and 70 to get 187.
-\left(\frac{187}{3780}-\frac{1\times 3}{63\times 2}\right)
Multiply \frac{1}{63} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-\left(\frac{187}{3780}-\frac{3}{126}\right)
Do the multiplications in the fraction \frac{1\times 3}{63\times 2}.
-\left(\frac{187}{3780}-\frac{1}{42}\right)
Reduce the fraction \frac{3}{126} to lowest terms by extracting and canceling out 3.
-\left(\frac{187}{3780}-\frac{90}{3780}\right)
Least common multiple of 3780 and 42 is 3780. Convert \frac{187}{3780} and \frac{1}{42} to fractions with denominator 3780.
-\frac{187-90}{3780}
Since \frac{187}{3780} and \frac{90}{3780} have the same denominator, subtract them by subtracting their numerators.
-\frac{97}{3780}
Subtract 90 from 187 to get 97.