Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. k
Tick mark Image

Similar Problems from Web Search

Share

\left(-\frac{1}{3k}\right)^{2}
Multiply -\frac{1}{3k} and -\frac{1}{3k} to get \left(-\frac{1}{3k}\right)^{2}.
\left(\frac{1}{3k}\right)^{2}
Calculate -\frac{1}{3k} to the power of 2 and get \left(\frac{1}{3k}\right)^{2}.
\frac{1^{2}}{\left(3k\right)^{2}}
To raise \frac{1}{3k} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{\left(3k\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{1}{3^{2}k^{2}}
Expand \left(3k\right)^{2}.
\frac{1}{9k^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\mathrm{d}}{\mathrm{d}k}(\left(-\frac{1}{3k}\right)^{2})
Multiply -\frac{1}{3k} and -\frac{1}{3k} to get \left(-\frac{1}{3k}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(\left(\frac{1}{3k}\right)^{2})
Calculate -\frac{1}{3k} to the power of 2 and get \left(\frac{1}{3k}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1^{2}}{\left(3k\right)^{2}})
To raise \frac{1}{3k} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{\left(3k\right)^{2}})
Calculate 1 to the power of 2 and get 1.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{3^{2}k^{2}})
Expand \left(3k\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{1}{9k^{2}})
Calculate 3 to the power of 2 and get 9.
-\left(9k^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}k}(9k^{2})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(9k^{2}\right)^{-2}\times 2\times 9k^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-18k^{1}\times \left(9k^{2}\right)^{-2}
Simplify.
-18k\times \left(9k^{2}\right)^{-2}
For any term t, t^{1}=t.