Evaluate
4\left(\sqrt{3}-2\right)\approx -1.07179677
Share
Copied to clipboard
-8+\sqrt{\left(-7\right)^{2}-\left(3\sqrt{5}\right)^{0}-4\cos(30)+\frac{6}{\sqrt{3}}}
Calculate \frac{1}{2} to the power of -3 and get 8.
-8+\sqrt{49-\left(3\sqrt{5}\right)^{0}-4\cos(30)+\frac{6}{\sqrt{3}}}
Calculate -7 to the power of 2 and get 49.
-8+\sqrt{49-1-4\cos(30)+\frac{6}{\sqrt{3}}}
Calculate 3\sqrt{5} to the power of 0 and get 1.
-8+\sqrt{48-4\cos(30)+\frac{6}{\sqrt{3}}}
Subtract 1 from 49 to get 48.
-8+\sqrt{48-4\times \frac{\sqrt{3}}{2}+\frac{6}{\sqrt{3}}}
Get the value of \cos(30) from trigonometric values table.
-8+\sqrt{48-2\sqrt{3}+\frac{6}{\sqrt{3}}}
Cancel out 2, the greatest common factor in 4 and 2.
-8+\sqrt{48-2\sqrt{3}+\frac{6\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{6}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-8+\sqrt{48-2\sqrt{3}+\frac{6\sqrt{3}}{3}}
The square of \sqrt{3} is 3.
-8+\sqrt{48-2\sqrt{3}+2\sqrt{3}}
Divide 6\sqrt{3} by 3 to get 2\sqrt{3}.
-8+\sqrt{48}
Combine -2\sqrt{3} and 2\sqrt{3} to get 0.
-8+4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}