Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-8+\sqrt{\left(-7\right)^{2}-\left(3\sqrt{5}\right)^{0}-4\cos(30)+\frac{6}{\sqrt{3}}}
Calculate \frac{1}{2} to the power of -3 and get 8.
-8+\sqrt{49-\left(3\sqrt{5}\right)^{0}-4\cos(30)+\frac{6}{\sqrt{3}}}
Calculate -7 to the power of 2 and get 49.
-8+\sqrt{49-1-4\cos(30)+\frac{6}{\sqrt{3}}}
Calculate 3\sqrt{5} to the power of 0 and get 1.
-8+\sqrt{48-4\cos(30)+\frac{6}{\sqrt{3}}}
Subtract 1 from 49 to get 48.
-8+\sqrt{48-4\times \frac{\sqrt{3}}{2}+\frac{6}{\sqrt{3}}}
Get the value of \cos(30) from trigonometric values table.
-8+\sqrt{48-2\sqrt{3}+\frac{6}{\sqrt{3}}}
Cancel out 2, the greatest common factor in 4 and 2.
-8+\sqrt{48-2\sqrt{3}+\frac{6\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{6}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-8+\sqrt{48-2\sqrt{3}+\frac{6\sqrt{3}}{3}}
The square of \sqrt{3} is 3.
-8+\sqrt{48-2\sqrt{3}+2\sqrt{3}}
Divide 6\sqrt{3} by 3 to get 2\sqrt{3}.
-8+\sqrt{48}
Combine -2\sqrt{3} and 2\sqrt{3} to get 0.
-8+4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.