Evaluate
-\frac{1}{12}\approx -0.083333333
Factor
-\frac{1}{12} = -0.08333333333333333
Share
Copied to clipboard
-|\frac{1}{1+\frac{1}{5}}-\frac{3-2}{1+\frac{2}{9-5}}+\frac{6-7}{4}|
Add 2 and 3 to get 5.
-|\frac{1}{\frac{5}{5}+\frac{1}{5}}-\frac{3-2}{1+\frac{2}{9-5}}+\frac{6-7}{4}|
Convert 1 to fraction \frac{5}{5}.
-|\frac{1}{\frac{5+1}{5}}-\frac{3-2}{1+\frac{2}{9-5}}+\frac{6-7}{4}|
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
-|\frac{1}{\frac{6}{5}}-\frac{3-2}{1+\frac{2}{9-5}}+\frac{6-7}{4}|
Add 5 and 1 to get 6.
-|1\times \frac{5}{6}-\frac{3-2}{1+\frac{2}{9-5}}+\frac{6-7}{4}|
Divide 1 by \frac{6}{5} by multiplying 1 by the reciprocal of \frac{6}{5}.
-|\frac{5}{6}-\frac{3-2}{1+\frac{2}{9-5}}+\frac{6-7}{4}|
Multiply 1 and \frac{5}{6} to get \frac{5}{6}.
-|\frac{5}{6}-\frac{1}{1+\frac{2}{9-5}}+\frac{6-7}{4}|
Subtract 2 from 3 to get 1.
-|\frac{5}{6}-\frac{1}{1+\frac{2}{4}}+\frac{6-7}{4}|
Subtract 5 from 9 to get 4.
-|\frac{5}{6}-\frac{1}{1+\frac{1}{2}}+\frac{6-7}{4}|
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
-|\frac{5}{6}-\frac{1}{\frac{2}{2}+\frac{1}{2}}+\frac{6-7}{4}|
Convert 1 to fraction \frac{2}{2}.
-|\frac{5}{6}-\frac{1}{\frac{2+1}{2}}+\frac{6-7}{4}|
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
-|\frac{5}{6}-\frac{1}{\frac{3}{2}}+\frac{6-7}{4}|
Add 2 and 1 to get 3.
-|\frac{5}{6}-1\times \frac{2}{3}+\frac{6-7}{4}|
Divide 1 by \frac{3}{2} by multiplying 1 by the reciprocal of \frac{3}{2}.
-|\frac{5}{6}-\frac{2}{3}+\frac{6-7}{4}|
Multiply 1 and \frac{2}{3} to get \frac{2}{3}.
-|\frac{5}{6}-\frac{4}{6}+\frac{6-7}{4}|
Least common multiple of 6 and 3 is 6. Convert \frac{5}{6} and \frac{2}{3} to fractions with denominator 6.
-|\frac{5-4}{6}+\frac{6-7}{4}|
Since \frac{5}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
-|\frac{1}{6}+\frac{6-7}{4}|
Subtract 4 from 5 to get 1.
-|\frac{1}{6}+\frac{-1}{4}|
Subtract 7 from 6 to get -1.
-|\frac{1}{6}-\frac{1}{4}|
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
-|\frac{2}{12}-\frac{3}{12}|
Least common multiple of 6 and 4 is 12. Convert \frac{1}{6} and \frac{1}{4} to fractions with denominator 12.
-|\frac{2-3}{12}|
Since \frac{2}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
-|-\frac{1}{12}|
Subtract 3 from 2 to get -1.
-\frac{1}{12}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{12} is \frac{1}{12}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}