Solve for y
y=1
y=4
Graph
Share
Copied to clipboard
a+b=5 ab=-\left(-4\right)=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -y^{2}+ay+by-4. To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=4 b=1
The solution is the pair that gives sum 5.
\left(-y^{2}+4y\right)+\left(y-4\right)
Rewrite -y^{2}+5y-4 as \left(-y^{2}+4y\right)+\left(y-4\right).
-y\left(y-4\right)+y-4
Factor out -y in -y^{2}+4y.
\left(y-4\right)\left(-y+1\right)
Factor out common term y-4 by using distributive property.
y=4 y=1
To find equation solutions, solve y-4=0 and -y+1=0.
-y^{2}+5y-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-5±\sqrt{25-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
Square 5.
y=\frac{-5±\sqrt{25+4\left(-4\right)}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-5±\sqrt{25-16}}{2\left(-1\right)}
Multiply 4 times -4.
y=\frac{-5±\sqrt{9}}{2\left(-1\right)}
Add 25 to -16.
y=\frac{-5±3}{2\left(-1\right)}
Take the square root of 9.
y=\frac{-5±3}{-2}
Multiply 2 times -1.
y=-\frac{2}{-2}
Now solve the equation y=\frac{-5±3}{-2} when ± is plus. Add -5 to 3.
y=1
Divide -2 by -2.
y=-\frac{8}{-2}
Now solve the equation y=\frac{-5±3}{-2} when ± is minus. Subtract 3 from -5.
y=4
Divide -8 by -2.
y=1 y=4
The equation is now solved.
-y^{2}+5y-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-y^{2}+5y-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
-y^{2}+5y=-\left(-4\right)
Subtracting -4 from itself leaves 0.
-y^{2}+5y=4
Subtract -4 from 0.
\frac{-y^{2}+5y}{-1}=\frac{4}{-1}
Divide both sides by -1.
y^{2}+\frac{5}{-1}y=\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
y^{2}-5y=\frac{4}{-1}
Divide 5 by -1.
y^{2}-5y=-4
Divide 4 by -1.
y^{2}-5y+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-5y+\frac{25}{4}=-4+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-5y+\frac{25}{4}=\frac{9}{4}
Add -4 to \frac{25}{4}.
\left(y-\frac{5}{2}\right)^{2}=\frac{9}{4}
Factor y^{2}-5y+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
y-\frac{5}{2}=\frac{3}{2} y-\frac{5}{2}=-\frac{3}{2}
Simplify.
y=4 y=1
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}