Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-8x+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\times 15}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\times 15}}{2\left(-1\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\times 15}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-8\right)±\sqrt{64+60}}{2\left(-1\right)}
Multiply 4 times 15.
x=\frac{-\left(-8\right)±\sqrt{124}}{2\left(-1\right)}
Add 64 to 60.
x=\frac{-\left(-8\right)±2\sqrt{31}}{2\left(-1\right)}
Take the square root of 124.
x=\frac{8±2\sqrt{31}}{2\left(-1\right)}
The opposite of -8 is 8.
x=\frac{8±2\sqrt{31}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{31}+8}{-2}
Now solve the equation x=\frac{8±2\sqrt{31}}{-2} when ± is plus. Add 8 to 2\sqrt{31}.
x=-\left(\sqrt{31}+4\right)
Divide 8+2\sqrt{31} by -2.
x=\frac{8-2\sqrt{31}}{-2}
Now solve the equation x=\frac{8±2\sqrt{31}}{-2} when ± is minus. Subtract 2\sqrt{31} from 8.
x=\sqrt{31}-4
Divide 8-2\sqrt{31} by -2.
-x^{2}-8x+15=-\left(x-\left(-\left(\sqrt{31}+4\right)\right)\right)\left(x-\left(\sqrt{31}-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\left(4+\sqrt{31}\right) for x_{1} and -4+\sqrt{31} for x_{2}.