Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-6x+36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 36}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 36}}{2\left(-1\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 36}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-6\right)±\sqrt{36+144}}{2\left(-1\right)}
Multiply 4 times 36.
x=\frac{-\left(-6\right)±\sqrt{180}}{2\left(-1\right)}
Add 36 to 144.
x=\frac{-\left(-6\right)±6\sqrt{5}}{2\left(-1\right)}
Take the square root of 180.
x=\frac{6±6\sqrt{5}}{2\left(-1\right)}
The opposite of -6 is 6.
x=\frac{6±6\sqrt{5}}{-2}
Multiply 2 times -1.
x=\frac{6\sqrt{5}+6}{-2}
Now solve the equation x=\frac{6±6\sqrt{5}}{-2} when ± is plus. Add 6 to 6\sqrt{5}.
x=-3\sqrt{5}-3
Divide 6+6\sqrt{5} by -2.
x=\frac{6-6\sqrt{5}}{-2}
Now solve the equation x=\frac{6±6\sqrt{5}}{-2} when ± is minus. Subtract 6\sqrt{5} from 6.
x=3\sqrt{5}-3
Divide 6-6\sqrt{5} by -2.
-x^{2}-6x+36=-\left(x-\left(-3\sqrt{5}-3\right)\right)\left(x-\left(3\sqrt{5}-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3-3\sqrt{5} for x_{1} and -3+3\sqrt{5} for x_{2}.