Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-5x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-1\right)\times 10}}{2\left(-1\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+4\times 10}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-5\right)±\sqrt{25+40}}{2\left(-1\right)}
Multiply 4 times 10.
x=\frac{-\left(-5\right)±\sqrt{65}}{2\left(-1\right)}
Add 25 to 40.
x=\frac{5±\sqrt{65}}{2\left(-1\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{65}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{65}+5}{-2}
Now solve the equation x=\frac{5±\sqrt{65}}{-2} when ± is plus. Add 5 to \sqrt{65}.
x=\frac{-\sqrt{65}-5}{2}
Divide 5+\sqrt{65} by -2.
x=\frac{5-\sqrt{65}}{-2}
Now solve the equation x=\frac{5±\sqrt{65}}{-2} when ± is minus. Subtract \sqrt{65} from 5.
x=\frac{\sqrt{65}-5}{2}
Divide 5-\sqrt{65} by -2.
-x^{2}-5x+10=-\left(x-\frac{-\sqrt{65}-5}{2}\right)\left(x-\frac{\sqrt{65}-5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5-\sqrt{65}}{2} for x_{1} and \frac{-5+\sqrt{65}}{2} for x_{2}.