Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-4x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-4\right)±\sqrt{16+12}}{2\left(-1\right)}
Multiply 4 times 3.
x=\frac{-\left(-4\right)±\sqrt{28}}{2\left(-1\right)}
Add 16 to 12.
x=\frac{-\left(-4\right)±2\sqrt{7}}{2\left(-1\right)}
Take the square root of 28.
x=\frac{4±2\sqrt{7}}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{7}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{7}+4}{-2}
Now solve the equation x=\frac{4±2\sqrt{7}}{-2} when ± is plus. Add 4 to 2\sqrt{7}.
x=-\left(\sqrt{7}+2\right)
Divide 4+2\sqrt{7} by -2.
x=\frac{4-2\sqrt{7}}{-2}
Now solve the equation x=\frac{4±2\sqrt{7}}{-2} when ± is minus. Subtract 2\sqrt{7} from 4.
x=\sqrt{7}-2
Divide 4-2\sqrt{7} by -2.
x=-\left(\sqrt{7}+2\right) x=\sqrt{7}-2
The equation is now solved.
-x^{2}-4x+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-4x+3-3=-3
Subtract 3 from both sides of the equation.
-x^{2}-4x=-3
Subtracting 3 from itself leaves 0.
\frac{-x^{2}-4x}{-1}=-\frac{3}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+4x=-\frac{3}{-1}
Divide -4 by -1.
x^{2}+4x=3
Divide -3 by -1.
x^{2}+4x+2^{2}=3+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=3+4
Square 2.
x^{2}+4x+4=7
Add 3 to 4.
\left(x+2\right)^{2}=7
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+2=\sqrt{7} x+2=-\sqrt{7}
Simplify.
x=\sqrt{7}-2 x=-\sqrt{7}-2
Subtract 2 from both sides of the equation.
-x^{2}-4x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-4\right)±\sqrt{16+12}}{2\left(-1\right)}
Multiply 4 times 3.
x=\frac{-\left(-4\right)±\sqrt{28}}{2\left(-1\right)}
Add 16 to 12.
x=\frac{-\left(-4\right)±2\sqrt{7}}{2\left(-1\right)}
Take the square root of 28.
x=\frac{4±2\sqrt{7}}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{7}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{7}+4}{-2}
Now solve the equation x=\frac{4±2\sqrt{7}}{-2} when ± is plus. Add 4 to 2\sqrt{7}.
x=-\left(\sqrt{7}+2\right)
Divide 4+2\sqrt{7} by -2.
x=\frac{4-2\sqrt{7}}{-2}
Now solve the equation x=\frac{4±2\sqrt{7}}{-2} when ± is minus. Subtract 2\sqrt{7} from 4.
x=\sqrt{7}-2
Divide 4-2\sqrt{7} by -2.
x=-\left(\sqrt{7}+2\right) x=\sqrt{7}-2
The equation is now solved.
-x^{2}-4x+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-4x+3-3=-3
Subtract 3 from both sides of the equation.
-x^{2}-4x=-3
Subtracting 3 from itself leaves 0.
\frac{-x^{2}-4x}{-1}=-\frac{3}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+4x=-\frac{3}{-1}
Divide -4 by -1.
x^{2}+4x=3
Divide -3 by -1.
x^{2}+4x+2^{2}=3+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=3+4
Square 2.
x^{2}+4x+4=7
Add 3 to 4.
\left(x+2\right)^{2}=7
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x+2=\sqrt{7} x+2=-\sqrt{7}
Simplify.
x=\sqrt{7}-2 x=-\sqrt{7}-2
Subtract 2 from both sides of the equation.