Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-2x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{8}}{2\left(-1\right)}
Add 4 to 4.
x=\frac{-\left(-2\right)±2\sqrt{2}}{2\left(-1\right)}
Take the square root of 8.
x=\frac{2±2\sqrt{2}}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{2}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{2}+2}{-2}
Now solve the equation x=\frac{2±2\sqrt{2}}{-2} when ± is plus. Add 2 to 2\sqrt{2}.
x=-\left(\sqrt{2}+1\right)
Divide 2+2\sqrt{2} by -2.
x=\frac{2-2\sqrt{2}}{-2}
Now solve the equation x=\frac{2±2\sqrt{2}}{-2} when ± is minus. Subtract 2\sqrt{2} from 2.
x=\sqrt{2}-1
Divide 2-2\sqrt{2} by -2.
x=-\left(\sqrt{2}+1\right) x=\sqrt{2}-1
The equation is now solved.
-x^{2}-2x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-2x+1-1=-1
Subtract 1 from both sides of the equation.
-x^{2}-2x=-1
Subtracting 1 from itself leaves 0.
\frac{-x^{2}-2x}{-1}=-\frac{1}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+2x=-\frac{1}{-1}
Divide -2 by -1.
x^{2}+2x=1
Divide -1 by -1.
x^{2}+2x+1^{2}=1+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=1+1
Square 1.
x^{2}+2x+1=2
Add 1 to 1.
\left(x+1\right)^{2}=2
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
x+1=\sqrt{2} x+1=-\sqrt{2}
Simplify.
x=\sqrt{2}-1 x=-\sqrt{2}-1
Subtract 1 from both sides of the equation.
-x^{2}-2x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{8}}{2\left(-1\right)}
Add 4 to 4.
x=\frac{-\left(-2\right)±2\sqrt{2}}{2\left(-1\right)}
Take the square root of 8.
x=\frac{2±2\sqrt{2}}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{2}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{2}+2}{-2}
Now solve the equation x=\frac{2±2\sqrt{2}}{-2} when ± is plus. Add 2 to 2\sqrt{2}.
x=-\left(\sqrt{2}+1\right)
Divide 2+2\sqrt{2} by -2.
x=\frac{2-2\sqrt{2}}{-2}
Now solve the equation x=\frac{2±2\sqrt{2}}{-2} when ± is minus. Subtract 2\sqrt{2} from 2.
x=\sqrt{2}-1
Divide 2-2\sqrt{2} by -2.
x=-\left(\sqrt{2}+1\right) x=\sqrt{2}-1
The equation is now solved.
-x^{2}-2x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-2x+1-1=-1
Subtract 1 from both sides of the equation.
-x^{2}-2x=-1
Subtracting 1 from itself leaves 0.
\frac{-x^{2}-2x}{-1}=-\frac{1}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+2x=-\frac{1}{-1}
Divide -2 by -1.
x^{2}+2x=1
Divide -1 by -1.
x^{2}+2x+1^{2}=1+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=1+1
Square 1.
x^{2}+2x+1=2
Add 1 to 1.
\left(x+1\right)^{2}=2
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
x+1=\sqrt{2} x+1=-\sqrt{2}
Simplify.
x=\sqrt{2}-1 x=-\sqrt{2}-1
Subtract 1 from both sides of the equation.