Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-11 ab=-\left(-30\right)=30
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-30. To find a and b, set up a system to be solved.
-1,-30 -2,-15 -3,-10 -5,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Calculate the sum for each pair.
a=-5 b=-6
The solution is the pair that gives sum -11.
\left(-x^{2}-5x\right)+\left(-6x-30\right)
Rewrite -x^{2}-11x-30 as \left(-x^{2}-5x\right)+\left(-6x-30\right).
x\left(-x-5\right)+6\left(-x-5\right)
Factor out x in the first and 6 in the second group.
\left(-x-5\right)\left(x+6\right)
Factor out common term -x-5 by using distributive property.
-x^{2}-11x-30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-1\right)\left(-30\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-1\right)\left(-30\right)}}{2\left(-1\right)}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+4\left(-30\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-11\right)±\sqrt{121-120}}{2\left(-1\right)}
Multiply 4 times -30.
x=\frac{-\left(-11\right)±\sqrt{1}}{2\left(-1\right)}
Add 121 to -120.
x=\frac{-\left(-11\right)±1}{2\left(-1\right)}
Take the square root of 1.
x=\frac{11±1}{2\left(-1\right)}
The opposite of -11 is 11.
x=\frac{11±1}{-2}
Multiply 2 times -1.
x=\frac{12}{-2}
Now solve the equation x=\frac{11±1}{-2} when ± is plus. Add 11 to 1.
x=-6
Divide 12 by -2.
x=\frac{10}{-2}
Now solve the equation x=\frac{11±1}{-2} when ± is minus. Subtract 1 from 11.
x=-5
Divide 10 by -2.
-x^{2}-11x-30=-\left(x-\left(-6\right)\right)\left(x-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6 for x_{1} and -5 for x_{2}.
-x^{2}-11x-30=-\left(x+6\right)\left(x+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.