Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-10 ab=-\left(-21\right)=21
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-21. To find a and b, set up a system to be solved.
-1,-21 -3,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 21.
-1-21=-22 -3-7=-10
Calculate the sum for each pair.
a=-3 b=-7
The solution is the pair that gives sum -10.
\left(-x^{2}-3x\right)+\left(-7x-21\right)
Rewrite -x^{2}-10x-21 as \left(-x^{2}-3x\right)+\left(-7x-21\right).
x\left(-x-3\right)+7\left(-x-3\right)
Factor out x in the first and 7 in the second group.
\left(-x-3\right)\left(x+7\right)
Factor out common term -x-3 by using distributive property.
-x^{2}-10x-21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-1\right)\left(-21\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-1\right)\left(-21\right)}}{2\left(-1\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+4\left(-21\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-10\right)±\sqrt{100-84}}{2\left(-1\right)}
Multiply 4 times -21.
x=\frac{-\left(-10\right)±\sqrt{16}}{2\left(-1\right)}
Add 100 to -84.
x=\frac{-\left(-10\right)±4}{2\left(-1\right)}
Take the square root of 16.
x=\frac{10±4}{2\left(-1\right)}
The opposite of -10 is 10.
x=\frac{10±4}{-2}
Multiply 2 times -1.
x=\frac{14}{-2}
Now solve the equation x=\frac{10±4}{-2} when ± is plus. Add 10 to 4.
x=-7
Divide 14 by -2.
x=\frac{6}{-2}
Now solve the equation x=\frac{10±4}{-2} when ± is minus. Subtract 4 from 10.
x=-3
Divide 6 by -2.
-x^{2}-10x-21=-\left(x-\left(-7\right)\right)\left(x-\left(-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -7 for x_{1} and -3 for x_{2}.
-x^{2}-10x-21=-\left(x+7\right)\left(x+3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.