Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=1 ab=-6=-6
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=3 b=-2
The solution is the pair that gives sum 1.
\left(-x^{2}+3x\right)+\left(-2x+6\right)
Rewrite -x^{2}+x+6 as \left(-x^{2}+3x\right)+\left(-2x+6\right).
-x\left(x-3\right)-2\left(x-3\right)
Factor out -x in the first and -2 in the second group.
\left(x-3\right)\left(-x-2\right)
Factor out common term x-3 by using distributive property.
-x^{2}+x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
Square 1.
x=\frac{-1±\sqrt{1+4\times 6}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1±\sqrt{1+24}}{2\left(-1\right)}
Multiply 4 times 6.
x=\frac{-1±\sqrt{25}}{2\left(-1\right)}
Add 1 to 24.
x=\frac{-1±5}{2\left(-1\right)}
Take the square root of 25.
x=\frac{-1±5}{-2}
Multiply 2 times -1.
x=\frac{4}{-2}
Now solve the equation x=\frac{-1±5}{-2} when ± is plus. Add -1 to 5.
x=-2
Divide 4 by -2.
x=-\frac{6}{-2}
Now solve the equation x=\frac{-1±5}{-2} when ± is minus. Subtract 5 from -1.
x=3
Divide -6 by -2.
-x^{2}+x+6=-\left(x-\left(-2\right)\right)\left(x-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2 for x_{1} and 3 for x_{2}.
-x^{2}+x+6=-\left(x+2\right)\left(x-3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.