Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=2 ab=-48=-48
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+48. To find a and b, set up a system to be solved.
-1,48 -2,24 -3,16 -4,12 -6,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Calculate the sum for each pair.
a=8 b=-6
The solution is the pair that gives sum 2.
\left(-x^{2}+8x\right)+\left(-6x+48\right)
Rewrite -x^{2}+2x+48 as \left(-x^{2}+8x\right)+\left(-6x+48\right).
-x\left(x-8\right)-6\left(x-8\right)
Factor out -x in the first and -6 in the second group.
\left(x-8\right)\left(-x-6\right)
Factor out common term x-8 by using distributive property.
-x^{2}+2x+48=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 48}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 48}}{2\left(-1\right)}
Square 2.
x=\frac{-2±\sqrt{4+4\times 48}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-2±\sqrt{4+192}}{2\left(-1\right)}
Multiply 4 times 48.
x=\frac{-2±\sqrt{196}}{2\left(-1\right)}
Add 4 to 192.
x=\frac{-2±14}{2\left(-1\right)}
Take the square root of 196.
x=\frac{-2±14}{-2}
Multiply 2 times -1.
x=\frac{12}{-2}
Now solve the equation x=\frac{-2±14}{-2} when ± is plus. Add -2 to 14.
x=-6
Divide 12 by -2.
x=-\frac{16}{-2}
Now solve the equation x=\frac{-2±14}{-2} when ± is minus. Subtract 14 from -2.
x=8
Divide -16 by -2.
-x^{2}+2x+48=-\left(x-\left(-6\right)\right)\left(x-8\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6 for x_{1} and 8 for x_{2}.
-x^{2}+2x+48=-\left(x+6\right)\left(x-8\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.