Solve for x (complex solution)
x=-\sqrt{999831}i+13\approx 13-999.91549643i
x=13+\sqrt{999831}i\approx 13+999.91549643i
Graph
Share
Copied to clipboard
-x^{2}+26x-1000000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-26±\sqrt{26^{2}-4\left(-1\right)\left(-1000000\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 26 for b, and -1000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26±\sqrt{676-4\left(-1\right)\left(-1000000\right)}}{2\left(-1\right)}
Square 26.
x=\frac{-26±\sqrt{676+4\left(-1000000\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-26±\sqrt{676-4000000}}{2\left(-1\right)}
Multiply 4 times -1000000.
x=\frac{-26±\sqrt{-3999324}}{2\left(-1\right)}
Add 676 to -4000000.
x=\frac{-26±2\sqrt{999831}i}{2\left(-1\right)}
Take the square root of -3999324.
x=\frac{-26±2\sqrt{999831}i}{-2}
Multiply 2 times -1.
x=\frac{-26+2\sqrt{999831}i}{-2}
Now solve the equation x=\frac{-26±2\sqrt{999831}i}{-2} when ± is plus. Add -26 to 2i\sqrt{999831}.
x=-\sqrt{999831}i+13
Divide -26+2i\sqrt{999831} by -2.
x=\frac{-2\sqrt{999831}i-26}{-2}
Now solve the equation x=\frac{-26±2\sqrt{999831}i}{-2} when ± is minus. Subtract 2i\sqrt{999831} from -26.
x=13+\sqrt{999831}i
Divide -26-2i\sqrt{999831} by -2.
x=-\sqrt{999831}i+13 x=13+\sqrt{999831}i
The equation is now solved.
-x^{2}+26x-1000000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+26x-1000000-\left(-1000000\right)=-\left(-1000000\right)
Add 1000000 to both sides of the equation.
-x^{2}+26x=-\left(-1000000\right)
Subtracting -1000000 from itself leaves 0.
-x^{2}+26x=1000000
Subtract -1000000 from 0.
\frac{-x^{2}+26x}{-1}=\frac{1000000}{-1}
Divide both sides by -1.
x^{2}+\frac{26}{-1}x=\frac{1000000}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-26x=\frac{1000000}{-1}
Divide 26 by -1.
x^{2}-26x=-1000000
Divide 1000000 by -1.
x^{2}-26x+\left(-13\right)^{2}=-1000000+\left(-13\right)^{2}
Divide -26, the coefficient of the x term, by 2 to get -13. Then add the square of -13 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-26x+169=-1000000+169
Square -13.
x^{2}-26x+169=-999831
Add -1000000 to 169.
\left(x-13\right)^{2}=-999831
Factor x^{2}-26x+169. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-13\right)^{2}}=\sqrt{-999831}
Take the square root of both sides of the equation.
x-13=\sqrt{999831}i x-13=-\sqrt{999831}i
Simplify.
x=13+\sqrt{999831}i x=-\sqrt{999831}i+13
Add 13 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}