Solve for x (complex solution)
x=-125\sqrt{47}i+125\approx 125-856.95682505i
x=125+125\sqrt{47}i\approx 125+856.95682505i
Graph
Share
Copied to clipboard
-x^{2}+250x-750000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-250±\sqrt{250^{2}-4\left(-1\right)\left(-750000\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 250 for b, and -750000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-250±\sqrt{62500-4\left(-1\right)\left(-750000\right)}}{2\left(-1\right)}
Square 250.
x=\frac{-250±\sqrt{62500+4\left(-750000\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-250±\sqrt{62500-3000000}}{2\left(-1\right)}
Multiply 4 times -750000.
x=\frac{-250±\sqrt{-2937500}}{2\left(-1\right)}
Add 62500 to -3000000.
x=\frac{-250±250\sqrt{47}i}{2\left(-1\right)}
Take the square root of -2937500.
x=\frac{-250±250\sqrt{47}i}{-2}
Multiply 2 times -1.
x=\frac{-250+250\sqrt{47}i}{-2}
Now solve the equation x=\frac{-250±250\sqrt{47}i}{-2} when ± is plus. Add -250 to 250i\sqrt{47}.
x=-125\sqrt{47}i+125
Divide -250+250i\sqrt{47} by -2.
x=\frac{-250\sqrt{47}i-250}{-2}
Now solve the equation x=\frac{-250±250\sqrt{47}i}{-2} when ± is minus. Subtract 250i\sqrt{47} from -250.
x=125+125\sqrt{47}i
Divide -250-250i\sqrt{47} by -2.
x=-125\sqrt{47}i+125 x=125+125\sqrt{47}i
The equation is now solved.
-x^{2}+250x-750000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+250x-750000-\left(-750000\right)=-\left(-750000\right)
Add 750000 to both sides of the equation.
-x^{2}+250x=-\left(-750000\right)
Subtracting -750000 from itself leaves 0.
-x^{2}+250x=750000
Subtract -750000 from 0.
\frac{-x^{2}+250x}{-1}=\frac{750000}{-1}
Divide both sides by -1.
x^{2}+\frac{250}{-1}x=\frac{750000}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-250x=\frac{750000}{-1}
Divide 250 by -1.
x^{2}-250x=-750000
Divide 750000 by -1.
x^{2}-250x+\left(-125\right)^{2}=-750000+\left(-125\right)^{2}
Divide -250, the coefficient of the x term, by 2 to get -125. Then add the square of -125 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-250x+15625=-750000+15625
Square -125.
x^{2}-250x+15625=-734375
Add -750000 to 15625.
\left(x-125\right)^{2}=-734375
Factor x^{2}-250x+15625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-125\right)^{2}}=\sqrt{-734375}
Take the square root of both sides of the equation.
x-125=125\sqrt{47}i x-125=-125\sqrt{47}i
Simplify.
x=125+125\sqrt{47}i x=-125\sqrt{47}i+125
Add 125 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}