Factor
\left(90-x\right)\left(x-110\right)
Evaluate
\left(90-x\right)\left(x-110\right)
Graph
Share
Copied to clipboard
a+b=200 ab=-\left(-9900\right)=9900
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-9900. To find a and b, set up a system to be solved.
1,9900 2,4950 3,3300 4,2475 5,1980 6,1650 9,1100 10,990 11,900 12,825 15,660 18,550 20,495 22,450 25,396 30,330 33,300 36,275 44,225 45,220 50,198 55,180 60,165 66,150 75,132 90,110 99,100
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 9900.
1+9900=9901 2+4950=4952 3+3300=3303 4+2475=2479 5+1980=1985 6+1650=1656 9+1100=1109 10+990=1000 11+900=911 12+825=837 15+660=675 18+550=568 20+495=515 22+450=472 25+396=421 30+330=360 33+300=333 36+275=311 44+225=269 45+220=265 50+198=248 55+180=235 60+165=225 66+150=216 75+132=207 90+110=200 99+100=199
Calculate the sum for each pair.
a=110 b=90
The solution is the pair that gives sum 200.
\left(-x^{2}+110x\right)+\left(90x-9900\right)
Rewrite -x^{2}+200x-9900 as \left(-x^{2}+110x\right)+\left(90x-9900\right).
-x\left(x-110\right)+90\left(x-110\right)
Factor out -x in the first and 90 in the second group.
\left(x-110\right)\left(-x+90\right)
Factor out common term x-110 by using distributive property.
-x^{2}+200x-9900=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-200±\sqrt{200^{2}-4\left(-1\right)\left(-9900\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-200±\sqrt{40000-4\left(-1\right)\left(-9900\right)}}{2\left(-1\right)}
Square 200.
x=\frac{-200±\sqrt{40000+4\left(-9900\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-200±\sqrt{40000-39600}}{2\left(-1\right)}
Multiply 4 times -9900.
x=\frac{-200±\sqrt{400}}{2\left(-1\right)}
Add 40000 to -39600.
x=\frac{-200±20}{2\left(-1\right)}
Take the square root of 400.
x=\frac{-200±20}{-2}
Multiply 2 times -1.
x=-\frac{180}{-2}
Now solve the equation x=\frac{-200±20}{-2} when ± is plus. Add -200 to 20.
x=90
Divide -180 by -2.
x=-\frac{220}{-2}
Now solve the equation x=\frac{-200±20}{-2} when ± is minus. Subtract 20 from -200.
x=110
Divide -220 by -2.
-x^{2}+200x-9900=-\left(x-90\right)\left(x-110\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 90 for x_{1} and 110 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}