Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+11x-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{11^{2}-4\left(-1\right)\left(-25\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 11 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-1\right)\left(-25\right)}}{2\left(-1\right)}
Square 11.
x=\frac{-11±\sqrt{121+4\left(-25\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-11±\sqrt{121-100}}{2\left(-1\right)}
Multiply 4 times -25.
x=\frac{-11±\sqrt{21}}{2\left(-1\right)}
Add 121 to -100.
x=\frac{-11±\sqrt{21}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{21}-11}{-2}
Now solve the equation x=\frac{-11±\sqrt{21}}{-2} when ± is plus. Add -11 to \sqrt{21}.
x=\frac{11-\sqrt{21}}{2}
Divide -11+\sqrt{21} by -2.
x=\frac{-\sqrt{21}-11}{-2}
Now solve the equation x=\frac{-11±\sqrt{21}}{-2} when ± is minus. Subtract \sqrt{21} from -11.
x=\frac{\sqrt{21}+11}{2}
Divide -11-\sqrt{21} by -2.
x=\frac{11-\sqrt{21}}{2} x=\frac{\sqrt{21}+11}{2}
The equation is now solved.
-x^{2}+11x-25=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+11x-25-\left(-25\right)=-\left(-25\right)
Add 25 to both sides of the equation.
-x^{2}+11x=-\left(-25\right)
Subtracting -25 from itself leaves 0.
-x^{2}+11x=25
Subtract -25 from 0.
\frac{-x^{2}+11x}{-1}=\frac{25}{-1}
Divide both sides by -1.
x^{2}+\frac{11}{-1}x=\frac{25}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-11x=\frac{25}{-1}
Divide 11 by -1.
x^{2}-11x=-25
Divide 25 by -1.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-25+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-11x+\frac{121}{4}=-25+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-11x+\frac{121}{4}=\frac{21}{4}
Add -25 to \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}-11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x-\frac{11}{2}=\frac{\sqrt{21}}{2} x-\frac{11}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}+11}{2} x=\frac{11-\sqrt{21}}{2}
Add \frac{11}{2} to both sides of the equation.