Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+11x+11=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\left(-1\right)\times 11}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{121-4\left(-1\right)\times 11}}{2\left(-1\right)}
Square 11.
x=\frac{-11±\sqrt{121+4\times 11}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-11±\sqrt{121+44}}{2\left(-1\right)}
Multiply 4 times 11.
x=\frac{-11±\sqrt{165}}{2\left(-1\right)}
Add 121 to 44.
x=\frac{-11±\sqrt{165}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{165}-11}{-2}
Now solve the equation x=\frac{-11±\sqrt{165}}{-2} when ± is plus. Add -11 to \sqrt{165}.
x=\frac{11-\sqrt{165}}{2}
Divide -11+\sqrt{165} by -2.
x=\frac{-\sqrt{165}-11}{-2}
Now solve the equation x=\frac{-11±\sqrt{165}}{-2} when ± is minus. Subtract \sqrt{165} from -11.
x=\frac{\sqrt{165}+11}{2}
Divide -11-\sqrt{165} by -2.
-x^{2}+11x+11=-\left(x-\frac{11-\sqrt{165}}{2}\right)\left(x-\frac{\sqrt{165}+11}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11-\sqrt{165}}{2} for x_{1} and \frac{11+\sqrt{165}}{2} for x_{2}.