Solve for x
x=2\sqrt{10}-5\approx 1.32455532
x=-2\sqrt{10}-5\approx -11.32455532
Graph
Share
Copied to clipboard
-x^{2}-10x+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-1\right)\times 15}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -10 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-1\right)\times 15}}{2\left(-1\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+4\times 15}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-10\right)±\sqrt{100+60}}{2\left(-1\right)}
Multiply 4 times 15.
x=\frac{-\left(-10\right)±\sqrt{160}}{2\left(-1\right)}
Add 100 to 60.
x=\frac{-\left(-10\right)±4\sqrt{10}}{2\left(-1\right)}
Take the square root of 160.
x=\frac{10±4\sqrt{10}}{2\left(-1\right)}
The opposite of -10 is 10.
x=\frac{10±4\sqrt{10}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{10}+10}{-2}
Now solve the equation x=\frac{10±4\sqrt{10}}{-2} when ± is plus. Add 10 to 4\sqrt{10}.
x=-2\sqrt{10}-5
Divide 10+4\sqrt{10} by -2.
x=\frac{10-4\sqrt{10}}{-2}
Now solve the equation x=\frac{10±4\sqrt{10}}{-2} when ± is minus. Subtract 4\sqrt{10} from 10.
x=2\sqrt{10}-5
Divide 10-4\sqrt{10} by -2.
x=-2\sqrt{10}-5 x=2\sqrt{10}-5
The equation is now solved.
-x^{2}-10x+15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-10x+15-15=-15
Subtract 15 from both sides of the equation.
-x^{2}-10x=-15
Subtracting 15 from itself leaves 0.
\frac{-x^{2}-10x}{-1}=-\frac{15}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{10}{-1}\right)x=-\frac{15}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+10x=-\frac{15}{-1}
Divide -10 by -1.
x^{2}+10x=15
Divide -15 by -1.
x^{2}+10x+5^{2}=15+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=15+25
Square 5.
x^{2}+10x+25=40
Add 15 to 25.
\left(x+5\right)^{2}=40
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{40}
Take the square root of both sides of the equation.
x+5=2\sqrt{10} x+5=-2\sqrt{10}
Simplify.
x=2\sqrt{10}-5 x=-2\sqrt{10}-5
Subtract 5 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}