Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+\frac{3}{5}x-\frac{151}{25}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{3}{5}±\sqrt{\left(\frac{3}{5}\right)^{2}-4\left(-1\right)\left(-\frac{151}{25}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{3}{5} for b, and -\frac{151}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{5}±\sqrt{\frac{9}{25}-4\left(-1\right)\left(-\frac{151}{25}\right)}}{2\left(-1\right)}
Square \frac{3}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{3}{5}±\sqrt{\frac{9}{25}+4\left(-\frac{151}{25}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{3}{5}±\sqrt{\frac{9-604}{25}}}{2\left(-1\right)}
Multiply 4 times -\frac{151}{25}.
x=\frac{-\frac{3}{5}±\sqrt{-\frac{119}{5}}}{2\left(-1\right)}
Add \frac{9}{25} to -\frac{604}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{3}{5}±\frac{\sqrt{595}i}{5}}{2\left(-1\right)}
Take the square root of -\frac{119}{5}.
x=\frac{-\frac{3}{5}±\frac{\sqrt{595}i}{5}}{-2}
Multiply 2 times -1.
x=\frac{-3+\sqrt{595}i}{-2\times 5}
Now solve the equation x=\frac{-\frac{3}{5}±\frac{\sqrt{595}i}{5}}{-2} when ± is plus. Add -\frac{3}{5} to \frac{i\sqrt{595}}{5}.
x=\frac{-\sqrt{595}i+3}{10}
Divide \frac{-3+i\sqrt{595}}{5} by -2.
x=\frac{-\sqrt{595}i-3}{-2\times 5}
Now solve the equation x=\frac{-\frac{3}{5}±\frac{\sqrt{595}i}{5}}{-2} when ± is minus. Subtract \frac{i\sqrt{595}}{5} from -\frac{3}{5}.
x=\frac{3+\sqrt{595}i}{10}
Divide \frac{-3-i\sqrt{595}}{5} by -2.
x=\frac{-\sqrt{595}i+3}{10} x=\frac{3+\sqrt{595}i}{10}
The equation is now solved.
-x^{2}+\frac{3}{5}x-\frac{151}{25}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+\frac{3}{5}x-\frac{151}{25}-\left(-\frac{151}{25}\right)=-\left(-\frac{151}{25}\right)
Add \frac{151}{25} to both sides of the equation.
-x^{2}+\frac{3}{5}x=-\left(-\frac{151}{25}\right)
Subtracting -\frac{151}{25} from itself leaves 0.
-x^{2}+\frac{3}{5}x=\frac{151}{25}
Subtract -\frac{151}{25} from 0.
\frac{-x^{2}+\frac{3}{5}x}{-1}=\frac{\frac{151}{25}}{-1}
Divide both sides by -1.
x^{2}+\frac{\frac{3}{5}}{-1}x=\frac{\frac{151}{25}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-\frac{3}{5}x=\frac{\frac{151}{25}}{-1}
Divide \frac{3}{5} by -1.
x^{2}-\frac{3}{5}x=-\frac{151}{25}
Divide \frac{151}{25} by -1.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=-\frac{151}{25}+\left(-\frac{3}{10}\right)^{2}
Divide -\frac{3}{5}, the coefficient of the x term, by 2 to get -\frac{3}{10}. Then add the square of -\frac{3}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{151}{25}+\frac{9}{100}
Square -\frac{3}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{119}{20}
Add -\frac{151}{25} to \frac{9}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{10}\right)^{2}=-\frac{119}{20}
Factor x^{2}-\frac{3}{5}x+\frac{9}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{-\frac{119}{20}}
Take the square root of both sides of the equation.
x-\frac{3}{10}=\frac{\sqrt{595}i}{10} x-\frac{3}{10}=-\frac{\sqrt{595}i}{10}
Simplify.
x=\frac{3+\sqrt{595}i}{10} x=\frac{-\sqrt{595}i+3}{10}
Add \frac{3}{10} to both sides of the equation.