Solve for x (complex solution)
x=\frac{-1+\sqrt{39}i}{4}\approx -0.25+1.5612495i
x=\frac{-\sqrt{39}i-1}{4}\approx -0.25-1.5612495i
Graph
Quiz
Quadratic Equation
5 problems similar to:
- { x }^{ 2 } + \frac{ 1 }{ 2 } x+ \frac{ 3 }{ 2 } =x+4
Share
Copied to clipboard
-x^{2}+\frac{1}{2}x+\frac{3}{2}-x=4
Subtract x from both sides.
-x^{2}-\frac{1}{2}x+\frac{3}{2}=4
Combine \frac{1}{2}x and -x to get -\frac{1}{2}x.
-x^{2}-\frac{1}{2}x+\frac{3}{2}-4=0
Subtract 4 from both sides.
-x^{2}-\frac{1}{2}x-\frac{5}{2}=0
Subtract 4 from \frac{3}{2} to get -\frac{5}{2}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\left(-1\right)\left(-\frac{5}{2}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -\frac{1}{2} for b, and -\frac{5}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\left(-1\right)\left(-\frac{5}{2}\right)}}{2\left(-1\right)}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+4\left(-\frac{5}{2}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-10}}{2\left(-1\right)}
Multiply 4 times -\frac{5}{2}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{-\frac{39}{4}}}{2\left(-1\right)}
Add \frac{1}{4} to -10.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{\sqrt{39}i}{2}}{2\left(-1\right)}
Take the square root of -\frac{39}{4}.
x=\frac{\frac{1}{2}±\frac{\sqrt{39}i}{2}}{2\left(-1\right)}
The opposite of -\frac{1}{2} is \frac{1}{2}.
x=\frac{\frac{1}{2}±\frac{\sqrt{39}i}{2}}{-2}
Multiply 2 times -1.
x=\frac{1+\sqrt{39}i}{-2\times 2}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{39}i}{2}}{-2} when ± is plus. Add \frac{1}{2} to \frac{i\sqrt{39}}{2}.
x=\frac{-\sqrt{39}i-1}{4}
Divide \frac{1+i\sqrt{39}}{2} by -2.
x=\frac{-\sqrt{39}i+1}{-2\times 2}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{39}i}{2}}{-2} when ± is minus. Subtract \frac{i\sqrt{39}}{2} from \frac{1}{2}.
x=\frac{-1+\sqrt{39}i}{4}
Divide \frac{1-i\sqrt{39}}{2} by -2.
x=\frac{-\sqrt{39}i-1}{4} x=\frac{-1+\sqrt{39}i}{4}
The equation is now solved.
-x^{2}+\frac{1}{2}x+\frac{3}{2}-x=4
Subtract x from both sides.
-x^{2}-\frac{1}{2}x+\frac{3}{2}=4
Combine \frac{1}{2}x and -x to get -\frac{1}{2}x.
-x^{2}-\frac{1}{2}x=4-\frac{3}{2}
Subtract \frac{3}{2} from both sides.
-x^{2}-\frac{1}{2}x=\frac{5}{2}
Subtract \frac{3}{2} from 4 to get \frac{5}{2}.
\frac{-x^{2}-\frac{1}{2}x}{-1}=\frac{\frac{5}{2}}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{\frac{1}{2}}{-1}\right)x=\frac{\frac{5}{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+\frac{1}{2}x=\frac{\frac{5}{2}}{-1}
Divide -\frac{1}{2} by -1.
x^{2}+\frac{1}{2}x=-\frac{5}{2}
Divide \frac{5}{2} by -1.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{5}{2}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{39}{16}
Add -\frac{5}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=-\frac{39}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{39}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{39}i}{4} x+\frac{1}{4}=-\frac{\sqrt{39}i}{4}
Simplify.
x=\frac{-1+\sqrt{39}i}{4} x=\frac{-\sqrt{39}i-1}{4}
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}