Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+\frac{1}{2}x+\frac{3}{2}-x=4
Subtract x from both sides.
-x^{2}-\frac{1}{2}x+\frac{3}{2}=4
Combine \frac{1}{2}x and -x to get -\frac{1}{2}x.
-x^{2}-\frac{1}{2}x+\frac{3}{2}-4=0
Subtract 4 from both sides.
-x^{2}-\frac{1}{2}x-\frac{5}{2}=0
Subtract 4 from \frac{3}{2} to get -\frac{5}{2}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\left(-1\right)\left(-\frac{5}{2}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -\frac{1}{2} for b, and -\frac{5}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\left(-1\right)\left(-\frac{5}{2}\right)}}{2\left(-1\right)}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+4\left(-\frac{5}{2}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-10}}{2\left(-1\right)}
Multiply 4 times -\frac{5}{2}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{-\frac{39}{4}}}{2\left(-1\right)}
Add \frac{1}{4} to -10.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{\sqrt{39}i}{2}}{2\left(-1\right)}
Take the square root of -\frac{39}{4}.
x=\frac{\frac{1}{2}±\frac{\sqrt{39}i}{2}}{2\left(-1\right)}
The opposite of -\frac{1}{2} is \frac{1}{2}.
x=\frac{\frac{1}{2}±\frac{\sqrt{39}i}{2}}{-2}
Multiply 2 times -1.
x=\frac{1+\sqrt{39}i}{-2\times 2}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{39}i}{2}}{-2} when ± is plus. Add \frac{1}{2} to \frac{i\sqrt{39}}{2}.
x=\frac{-\sqrt{39}i-1}{4}
Divide \frac{1+i\sqrt{39}}{2} by -2.
x=\frac{-\sqrt{39}i+1}{-2\times 2}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{39}i}{2}}{-2} when ± is minus. Subtract \frac{i\sqrt{39}}{2} from \frac{1}{2}.
x=\frac{-1+\sqrt{39}i}{4}
Divide \frac{1-i\sqrt{39}}{2} by -2.
x=\frac{-\sqrt{39}i-1}{4} x=\frac{-1+\sqrt{39}i}{4}
The equation is now solved.
-x^{2}+\frac{1}{2}x+\frac{3}{2}-x=4
Subtract x from both sides.
-x^{2}-\frac{1}{2}x+\frac{3}{2}=4
Combine \frac{1}{2}x and -x to get -\frac{1}{2}x.
-x^{2}-\frac{1}{2}x=4-\frac{3}{2}
Subtract \frac{3}{2} from both sides.
-x^{2}-\frac{1}{2}x=\frac{5}{2}
Subtract \frac{3}{2} from 4 to get \frac{5}{2}.
\frac{-x^{2}-\frac{1}{2}x}{-1}=\frac{\frac{5}{2}}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{\frac{1}{2}}{-1}\right)x=\frac{\frac{5}{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+\frac{1}{2}x=\frac{\frac{5}{2}}{-1}
Divide -\frac{1}{2} by -1.
x^{2}+\frac{1}{2}x=-\frac{5}{2}
Divide \frac{5}{2} by -1.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{5}{2}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{39}{16}
Add -\frac{5}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=-\frac{39}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{39}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{39}i}{4} x+\frac{1}{4}=-\frac{\sqrt{39}i}{4}
Simplify.
x=\frac{-1+\sqrt{39}i}{4} x=\frac{-\sqrt{39}i-1}{4}
Subtract \frac{1}{4} from both sides of the equation.