Solve for n (complex solution)
n=\sqrt{6}-1\approx 1.449489743
n=-\left(\sqrt{6}+1\right)\approx -3.449489743
Solve for n
n=\sqrt{6}-1\approx 1.449489743
n=-\sqrt{6}-1\approx -3.449489743
Share
Copied to clipboard
-n^{2}-2n+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 5}}{2\left(-1\right)}
Square -2.
n=\frac{-\left(-2\right)±\sqrt{4+4\times 5}}{2\left(-1\right)}
Multiply -4 times -1.
n=\frac{-\left(-2\right)±\sqrt{4+20}}{2\left(-1\right)}
Multiply 4 times 5.
n=\frac{-\left(-2\right)±\sqrt{24}}{2\left(-1\right)}
Add 4 to 20.
n=\frac{-\left(-2\right)±2\sqrt{6}}{2\left(-1\right)}
Take the square root of 24.
n=\frac{2±2\sqrt{6}}{2\left(-1\right)}
The opposite of -2 is 2.
n=\frac{2±2\sqrt{6}}{-2}
Multiply 2 times -1.
n=\frac{2\sqrt{6}+2}{-2}
Now solve the equation n=\frac{2±2\sqrt{6}}{-2} when ± is plus. Add 2 to 2\sqrt{6}.
n=-\left(\sqrt{6}+1\right)
Divide 2+2\sqrt{6} by -2.
n=\frac{2-2\sqrt{6}}{-2}
Now solve the equation n=\frac{2±2\sqrt{6}}{-2} when ± is minus. Subtract 2\sqrt{6} from 2.
n=\sqrt{6}-1
Divide 2-2\sqrt{6} by -2.
n=-\left(\sqrt{6}+1\right) n=\sqrt{6}-1
The equation is now solved.
-n^{2}-2n+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-n^{2}-2n+5-5=-5
Subtract 5 from both sides of the equation.
-n^{2}-2n=-5
Subtracting 5 from itself leaves 0.
\frac{-n^{2}-2n}{-1}=-\frac{5}{-1}
Divide both sides by -1.
n^{2}+\left(-\frac{2}{-1}\right)n=-\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
n^{2}+2n=-\frac{5}{-1}
Divide -2 by -1.
n^{2}+2n=5
Divide -5 by -1.
n^{2}+2n+1^{2}=5+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+2n+1=5+1
Square 1.
n^{2}+2n+1=6
Add 5 to 1.
\left(n+1\right)^{2}=6
Factor n^{2}+2n+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+1\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
n+1=\sqrt{6} n+1=-\sqrt{6}
Simplify.
n=\sqrt{6}-1 n=-\sqrt{6}-1
Subtract 1 from both sides of the equation.
-n^{2}-2n+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 5}}{2\left(-1\right)}
Square -2.
n=\frac{-\left(-2\right)±\sqrt{4+4\times 5}}{2\left(-1\right)}
Multiply -4 times -1.
n=\frac{-\left(-2\right)±\sqrt{4+20}}{2\left(-1\right)}
Multiply 4 times 5.
n=\frac{-\left(-2\right)±\sqrt{24}}{2\left(-1\right)}
Add 4 to 20.
n=\frac{-\left(-2\right)±2\sqrt{6}}{2\left(-1\right)}
Take the square root of 24.
n=\frac{2±2\sqrt{6}}{2\left(-1\right)}
The opposite of -2 is 2.
n=\frac{2±2\sqrt{6}}{-2}
Multiply 2 times -1.
n=\frac{2\sqrt{6}+2}{-2}
Now solve the equation n=\frac{2±2\sqrt{6}}{-2} when ± is plus. Add 2 to 2\sqrt{6}.
n=-\left(\sqrt{6}+1\right)
Divide 2+2\sqrt{6} by -2.
n=\frac{2-2\sqrt{6}}{-2}
Now solve the equation n=\frac{2±2\sqrt{6}}{-2} when ± is minus. Subtract 2\sqrt{6} from 2.
n=\sqrt{6}-1
Divide 2-2\sqrt{6} by -2.
n=-\left(\sqrt{6}+1\right) n=\sqrt{6}-1
The equation is now solved.
-n^{2}-2n+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-n^{2}-2n+5-5=-5
Subtract 5 from both sides of the equation.
-n^{2}-2n=-5
Subtracting 5 from itself leaves 0.
\frac{-n^{2}-2n}{-1}=-\frac{5}{-1}
Divide both sides by -1.
n^{2}+\left(-\frac{2}{-1}\right)n=-\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
n^{2}+2n=-\frac{5}{-1}
Divide -2 by -1.
n^{2}+2n=5
Divide -5 by -1.
n^{2}+2n+1^{2}=5+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+2n+1=5+1
Square 1.
n^{2}+2n+1=6
Add 5 to 1.
\left(n+1\right)^{2}=6
Factor n^{2}+2n+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+1\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
n+1=\sqrt{6} n+1=-\sqrt{6}
Simplify.
n=\sqrt{6}-1 n=-\sqrt{6}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}