Evaluate
ab
Expand
ab
Share
Copied to clipboard
-a^{8}\left(-1\right)^{7}\times \left(\frac{b}{a}\right)^{7}\left(-\frac{1}{b}\right)^{6}
Expand \left(-\frac{b}{a}\right)^{7}.
-a^{8}\left(-1\right)\times \left(\frac{b}{a}\right)^{7}\left(-\frac{1}{b}\right)^{6}
Calculate -1 to the power of 7 and get -1.
-a^{8}\left(-1\right)\times \frac{b^{7}}{a^{7}}\left(-\frac{1}{b}\right)^{6}
To raise \frac{b}{a} to a power, raise both numerator and denominator to the power and then divide.
a^{8}\times \frac{b^{7}}{a^{7}}\left(-\frac{1}{b}\right)^{6}
Multiply -1 and -1 to get 1.
a^{8}\times \frac{b^{7}}{a^{7}}\left(-1\right)^{6}\times \left(\frac{1}{b}\right)^{6}
Expand \left(-\frac{1}{b}\right)^{6}.
a^{8}\times \frac{b^{7}}{a^{7}}\times 1\times \left(\frac{1}{b}\right)^{6}
Calculate -1 to the power of 6 and get 1.
a^{8}\times \frac{b^{7}}{a^{7}}\times 1\times \frac{1^{6}}{b^{6}}
To raise \frac{1}{b} to a power, raise both numerator and denominator to the power and then divide.
a^{8}\times \frac{b^{7}}{a^{7}}\times \frac{1^{6}}{b^{6}}
Express 1\times \frac{1^{6}}{b^{6}} as a single fraction.
\frac{a^{8}b^{7}}{a^{7}}\times \frac{1^{6}}{b^{6}}
Express a^{8}\times \frac{b^{7}}{a^{7}} as a single fraction.
ab^{7}\times \frac{1^{6}}{b^{6}}
Cancel out a^{7} in both numerator and denominator.
\frac{ab^{7}\times 1^{6}}{b^{6}}
Express ab^{7}\times \frac{1^{6}}{b^{6}} as a single fraction.
1^{6}ab
Cancel out b^{6} in both numerator and denominator.
1ab
Calculate 1 to the power of 6 and get 1.
ab
For any term t, t\times 1=t and 1t=t.
-a^{8}\left(-1\right)^{7}\times \left(\frac{b}{a}\right)^{7}\left(-\frac{1}{b}\right)^{6}
Expand \left(-\frac{b}{a}\right)^{7}.
-a^{8}\left(-1\right)\times \left(\frac{b}{a}\right)^{7}\left(-\frac{1}{b}\right)^{6}
Calculate -1 to the power of 7 and get -1.
-a^{8}\left(-1\right)\times \frac{b^{7}}{a^{7}}\left(-\frac{1}{b}\right)^{6}
To raise \frac{b}{a} to a power, raise both numerator and denominator to the power and then divide.
a^{8}\times \frac{b^{7}}{a^{7}}\left(-\frac{1}{b}\right)^{6}
Multiply -1 and -1 to get 1.
a^{8}\times \frac{b^{7}}{a^{7}}\left(-1\right)^{6}\times \left(\frac{1}{b}\right)^{6}
Expand \left(-\frac{1}{b}\right)^{6}.
a^{8}\times \frac{b^{7}}{a^{7}}\times 1\times \left(\frac{1}{b}\right)^{6}
Calculate -1 to the power of 6 and get 1.
a^{8}\times \frac{b^{7}}{a^{7}}\times 1\times \frac{1^{6}}{b^{6}}
To raise \frac{1}{b} to a power, raise both numerator and denominator to the power and then divide.
a^{8}\times \frac{b^{7}}{a^{7}}\times \frac{1^{6}}{b^{6}}
Express 1\times \frac{1^{6}}{b^{6}} as a single fraction.
\frac{a^{8}b^{7}}{a^{7}}\times \frac{1^{6}}{b^{6}}
Express a^{8}\times \frac{b^{7}}{a^{7}} as a single fraction.
ab^{7}\times \frac{1^{6}}{b^{6}}
Cancel out a^{7} in both numerator and denominator.
\frac{ab^{7}\times 1^{6}}{b^{6}}
Express ab^{7}\times \frac{1^{6}}{b^{6}} as a single fraction.
1^{6}ab
Cancel out b^{6} in both numerator and denominator.
1ab
Calculate 1 to the power of 6 and get 1.
ab
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}