Verify
false
Share
Copied to clipboard
-9=\left(-3^{2}\right)\times 2\text{ and }\left(-3^{2}\right)\times 2=-6+8\sqrt{9}\times 2^{5}
Calculate 3 to the power of 2 and get 9.
-9=-9\times 2\text{ and }\left(-3^{2}\right)\times 2=-6+8\sqrt{9}\times 2^{5}
Calculate 3 to the power of 2 and get 9.
-9=-18\text{ and }\left(-3^{2}\right)\times 2=-6+8\sqrt{9}\times 2^{5}
Multiply -9 and 2 to get -18.
\text{false}\text{ and }\left(-3^{2}\right)\times 2=-6+8\sqrt{9}\times 2^{5}
Compare -9 and -18.
\text{false}\text{ and }-9\times 2=-6+8\sqrt{9}\times 2^{5}
Calculate 3 to the power of 2 and get 9.
\text{false}\text{ and }-18=-6+8\sqrt{9}\times 2^{5}
Multiply -9 and 2 to get -18.
\text{false}\text{ and }-18=-6+8\times 3\times 2^{5}
Calculate the square root of 9 and get 3.
\text{false}\text{ and }-18=-6+24\times 2^{5}
Multiply 8 and 3 to get 24.
\text{false}\text{ and }-18=-6+24\times 32
Calculate 2 to the power of 5 and get 32.
\text{false}\text{ and }-18=-6+768
Multiply 24 and 32 to get 768.
\text{false}\text{ and }-18=762
Add -6 and 768 to get 762.
\text{false}\text{ and }\text{false}
Compare -18 and 762.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}