- { 3 }^{ 2 } + \frac{ \frac{ { 3 }^{ 3 } { 3 }^{ 5 } }{ { 3 }^{ 6 } } }{ { 3 }^{ 2 } } + \frac{ { \left( \frac{ 1 }{ 5 } \right) }^{ -1 } }{ { \left( \frac{ 6 }{ 8 } \right) }^{ -1 } } - \frac{ 10 \sqrt{ 178 } }{ { 178 }^{ } }
Evaluate
-\frac{5\sqrt{178}}{89}-\frac{17}{4}\approx -4.999531689
Factor
\frac{-20 \sqrt{178} - 1513}{356} = -4.999531688995861
Share
Copied to clipboard
-3^{2}+\frac{\frac{3^{8}}{3^{6}}}{3^{2}}+\frac{\left(\frac{1}{5}\right)^{-1}}{\left(\frac{6}{8}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
To multiply powers of the same base, add their exponents. Add 3 and 5 to get 8.
-3^{2}+\frac{3^{2}}{3^{2}}+\frac{\left(\frac{1}{5}\right)^{-1}}{\left(\frac{6}{8}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 6 from 8 to get 2.
-3^{2}+1+\frac{\left(\frac{1}{5}\right)^{-1}}{\left(\frac{6}{8}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
Divide 3^{2} by 3^{2} to get 1.
-9+1+\frac{\left(\frac{1}{5}\right)^{-1}}{\left(\frac{6}{8}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
Calculate 3 to the power of 2 and get 9.
-8+\frac{\left(\frac{1}{5}\right)^{-1}}{\left(\frac{6}{8}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
Add -9 and 1 to get -8.
-8+\frac{5}{\left(\frac{6}{8}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
Calculate \frac{1}{5} to the power of -1 and get 5.
-8+\frac{5}{\left(\frac{3}{4}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
-8+\frac{5}{\frac{4}{3}}-\frac{10\sqrt{178}}{178^{1}}
Calculate \frac{3}{4} to the power of -1 and get \frac{4}{3}.
-8+5\times \frac{3}{4}-\frac{10\sqrt{178}}{178^{1}}
Divide 5 by \frac{4}{3} by multiplying 5 by the reciprocal of \frac{4}{3}.
-8+\frac{15}{4}-\frac{10\sqrt{178}}{178^{1}}
Multiply 5 and \frac{3}{4} to get \frac{15}{4}.
-\frac{17}{4}-\frac{10\sqrt{178}}{178^{1}}
Add -8 and \frac{15}{4} to get -\frac{17}{4}.
-\frac{17}{4}-\frac{5\sqrt{178}}{89}
Cancel out 2 in both numerator and denominator.
-\frac{17\times 89}{356}-\frac{4\times 5\sqrt{178}}{356}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 89 is 356. Multiply -\frac{17}{4} times \frac{89}{89}. Multiply \frac{5\sqrt{178}}{89} times \frac{4}{4}.
\frac{-17\times 89-4\times 5\sqrt{178}}{356}
Since -\frac{17\times 89}{356} and \frac{4\times 5\sqrt{178}}{356} have the same denominator, subtract them by subtracting their numerators.
\frac{-1513-20\sqrt{178}}{356}
Do the multiplications in -17\times 89-4\times 5\sqrt{178}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}