Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

-3^{2}+\frac{\frac{3^{8}}{3^{6}}}{3^{2}}+\frac{\left(\frac{1}{5}\right)^{-1}}{\left(\frac{6}{8}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
To multiply powers of the same base, add their exponents. Add 3 and 5 to get 8.
-3^{2}+\frac{3^{2}}{3^{2}}+\frac{\left(\frac{1}{5}\right)^{-1}}{\left(\frac{6}{8}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 6 from 8 to get 2.
-3^{2}+1+\frac{\left(\frac{1}{5}\right)^{-1}}{\left(\frac{6}{8}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
Divide 3^{2} by 3^{2} to get 1.
-9+1+\frac{\left(\frac{1}{5}\right)^{-1}}{\left(\frac{6}{8}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
Calculate 3 to the power of 2 and get 9.
-8+\frac{\left(\frac{1}{5}\right)^{-1}}{\left(\frac{6}{8}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
Add -9 and 1 to get -8.
-8+\frac{5}{\left(\frac{6}{8}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
Calculate \frac{1}{5} to the power of -1 and get 5.
-8+\frac{5}{\left(\frac{3}{4}\right)^{-1}}-\frac{10\sqrt{178}}{178^{1}}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
-8+\frac{5}{\frac{4}{3}}-\frac{10\sqrt{178}}{178^{1}}
Calculate \frac{3}{4} to the power of -1 and get \frac{4}{3}.
-8+5\times \frac{3}{4}-\frac{10\sqrt{178}}{178^{1}}
Divide 5 by \frac{4}{3} by multiplying 5 by the reciprocal of \frac{4}{3}.
-8+\frac{15}{4}-\frac{10\sqrt{178}}{178^{1}}
Multiply 5 and \frac{3}{4} to get \frac{15}{4}.
-\frac{17}{4}-\frac{10\sqrt{178}}{178^{1}}
Add -8 and \frac{15}{4} to get -\frac{17}{4}.
-\frac{17}{4}-\frac{5\sqrt{178}}{89}
Cancel out 2 in both numerator and denominator.
-\frac{17\times 89}{356}-\frac{4\times 5\sqrt{178}}{356}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 89 is 356. Multiply -\frac{17}{4} times \frac{89}{89}. Multiply \frac{5\sqrt{178}}{89} times \frac{4}{4}.
\frac{-17\times 89-4\times 5\sqrt{178}}{356}
Since -\frac{17\times 89}{356} and \frac{4\times 5\sqrt{178}}{356} have the same denominator, subtract them by subtracting their numerators.
\frac{-1513-20\sqrt{178}}{356}
Do the multiplications in -17\times 89-4\times 5\sqrt{178}.