Evaluate
-\frac{13}{6}\approx -2.166666667
Factor
-\frac{13}{6} = -2\frac{1}{6} = -2.1666666666666665
Share
Copied to clipboard
-1+\left(1-0.5\right)\times \frac{1}{3}\lfloor 2-\left(-3\right)^{2}\rfloor
Calculate 1 to the power of 4 and get 1.
-1+0.5\times \frac{1}{3}\lfloor 2-\left(-3\right)^{2}\rfloor
Subtract 0.5 from 1 to get 0.5.
-1+\frac{1}{2}\times \frac{1}{3}\lfloor 2-\left(-3\right)^{2}\rfloor
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
-1+\frac{1\times 1}{2\times 3}\lfloor 2-\left(-3\right)^{2}\rfloor
Multiply \frac{1}{2} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
-1+\frac{1}{6}\lfloor 2-\left(-3\right)^{2}\rfloor
Do the multiplications in the fraction \frac{1\times 1}{2\times 3}.
-1+\frac{1}{6}\lfloor 2-9\rfloor
Calculate -3 to the power of 2 and get 9.
-1+\frac{1}{6}\lfloor -7\rfloor
Subtract 9 from 2 to get -7.
-1+\frac{1}{6}\left(-7\right)
The floor of a real number a is the largest integer number less than or equal to a. The floor of -7 is -7.
-1+\frac{-7}{6}
Multiply \frac{1}{6} and -7 to get \frac{-7}{6}.
-1-\frac{7}{6}
Fraction \frac{-7}{6} can be rewritten as -\frac{7}{6} by extracting the negative sign.
-\frac{6}{6}-\frac{7}{6}
Convert -1 to fraction -\frac{6}{6}.
\frac{-6-7}{6}
Since -\frac{6}{6} and \frac{7}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{6}
Subtract 7 from -6 to get -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}